The technical notes for implementation

export version al28t3

on IBM Regatta

Oldřich Španiel oldrich.spaniel@shmu.sk
September 2004, Bratislava

Thanks current ALADIN’s mother platform there is no principle difficulties during implementation of new version. Generally speaking, the new version is really adjusted for IBM environment in porting field, optimisation one as well. Some difficulties during implementation on other platforms could be done as proof, so this document could be helpful as quick guideline for that case. Few basic steps, notes about cosmetics changes in code, friend’s hints and also some wonder questions are following below.

HW:
p690 Power 4+ 1,7 MHz, 32 CPU’s, 32 GB memory

SW:
AIX 5.2 ML3, XLF 8.1.1.1, C compiler 6.0, ESSL, MASS, LoadLeveler 3.2

List of compilation projects in al28t3 at that moment:

ald, arp, tal, tfl, ost, coh, sat, xrd and dummy

Compilation :

· no gmkpack was used (as one of the last implementation freedom)

· hyperdomake made in house (for more detail, pls., contact Jozef.Vivoda@shmu.sk)

· how to create interface -> the number of empty headers files has to be done at first (*.intfb.h = 2250 files)

-
compilation option :

preprocessor directives
FCPPFLAGS = -DRS6K,-DMPI,-DMACRO,-DREAL8,-DADDRESS64
CPPFLAGS = -DRS6K -DCANARI -DBLAS -DXPRIVATE=PRIVATE -DINTERCEPT_ALLOC -DUSE_ALLOCA_H -DHPM
f90 compiler
F90 = mpxlf90_r
al28t0_t1
FBASIC = -q64 -c -qextname
CBASIC = -q64 -c
OPT_FFLAGS = -qstrict -O3 -qmaxmem=-1
OPT_CFLAGS = -qstrict -O3
LST_FFLAGS = -qsource
LST_CFLAGS = -qsource -qflag=w:w
MORE_FFLAGS = -qarch=pwr4 -qtune=pwr4 -qspillsize=65536
MORE_CFLAGS =
FFLAGS = -WF,$(FCPPFLAGS) $(INCLUDE) $(CPPINCLUDE) -qspillsize=65536 \
$(FBASIC) $(OPT_FFLAGS) $(LST_FFLAGS) $(MORE_FFLAGS)
loading flags
LDFLAGS = -berok -qextname -q64 -b64 -bmap:map -bloadmap:loadmap
F77FLAG = -qautodbl=dbl4 -qfixed=132 -qsuffix=cpp=F
c/c++ compiler
CC = mpcc_r
CFLAGS = $(CPPFLAGS) $(CPPINCLUDE) \

$(CBASIC) $(OPT_CFLAGS) $(LST_CFLAGS) $(MORE_CFLAGS)

Code changes:

./arp/control/cgr1.F90.orig
missing - EXTERNAL SIM4D, SCAAS
./arp/control/cnt0.F90.orig
not properly done on our IBM at that moment !ol CALL getmemstat(NULOUT, 'CNT0')
./arp/control/cva2.F90.orig
 missing - EXTERNAL SIM4D,PROSCA
./arp/control/forecast_error.F90.orig
missing - EXTERNAL SIM4D
./arp/pp_obs/neural_simulator.F90.orig
missing - EXTERNAL FORWARD_BACKWARD_PROP
./arp/setup/sumpini.F90.orig
no calling MASS !ol N_VMASS=8
./arp/sinvect/cun3.F90.orig
missing - EXTERNAL SIM4D
missing - EXTERNAL SCAAS
./ost/common/stmfun.h.orig

two different header files in export al28t3
 INTEGER(KIND=JPIM) :: INSERT
 INTEGER(KIND=JPIM) :: ICN2FL
 REAL(KIND=JPRB) :: UCOM
 REAL(KIND=JPRB) :: VCOM
 REAL(KIND=JPRB) :: FOEALFA
 REAL(KIND=JPRB) :: FOEEWM
 REAL(KIND=JPRB) :: FOEEWMO
 FOEEWMO(PTARG) = R2ES*EXP(R3LES*(PTARG-RTT)/(PTARG-R4LES))
./xrd/module/yomerrtrap.F90.orig

no properly done on our IBM
 !#ifdef RS6K
 !INTEGER(KIND=JPIM) SIGNAL_TRAP, SIGS(1),IRES
 !
 !SIGS(1) = 0
 !IRES = SIGNAL_TRAP(0, SIGS)
 !#endif
 WRITE(*,*) "WARNING: SIGNAL_TRAP for IBM must be done later"

./xrd/utilities/getcurheap.c.removed
./xrd/not_used/sgemmx.vpp.F.removed
./xrd/not_used/minv.vpp.F.removed

Linking :

dummy.c

void util_cputime_(void){
void getstackusage_(void){
void getcurheap_(void){
void profile_heap_get_(void){
void lockon_(void){
void pbopen_(void){
void pbread2_(void){
void pbclose_(void){
void gribex_(void){
void iymd2cd_(void){
void icd2ymd_(void){
void iinitfdb_vpp_(void){
void opendb_(void){
void shuffle_odb_(void){
void getdb_(void){
void abortdb_(void){
void putdb_(void){
void rrtm_kgb1_(void){
void rrtm_kgb2_(void){
void rrtm_kgb3_(void){
void rrtm_kgb4_(void){
void rrtm_kgb5_(void){
void rrtm_kgb6_(void){
void rrtm_kgb7_(void){
void rrtm_kgb8_(void){
void rrtm_kgb9_(void){
void rrtm_kgb10_(void){
void rrtm_kgb11_(void){
void rrtm_kgb12_(void){
void rrtm_kgb13_(void){
void rrtm_kgb14_(void){
void rrtm_kgb15_(void){
void rrtm_kgb16_(void){
void pbwrite_(void){
void pbflush_(void){
void pbread_(void){
void iinitfdb_(void){
void iopenfdb_(void){
void isetvalfdb_(void){
void gribread_(void){
void isetfieldcountfdb_(void){
void iwritefdb_(void){
void codeps_(void){
void grsvck_(void){
void vasin(void){
void vacos_(void){
void mindiff_(void){
void advar_(void){
void dvssmi_(void){
void ssyev_(void){
void ystbl_(void){
void dgtsv_(void){
void dsyev_(void){
void bool_setparam_obsort_(void){
void int_setparam_obsort_(void){
void setup_obsort_(void){
void wtfunc_obsort_(void){
void e02bcf_(void){
void swapoutdb_(void){
void storedb_(void){
void closedb_(void){
void fush_(void){
void util_filesize_(void){
void util_readraw_(void){
void util_writeraw_(void){
void util_remove_file_(void){
void pbpseu_(void){
void decops2_(void){
void incdate_(void){
void pbtell_(void){
void pbseek_(void){
void horcst_(void){
void iclosefdb_(void){
void iflushfdb_(void){
void util_cgetenv_(void){
void wvalloc_(void){
void wavemdl_(void){
void wvdealloc_(void){
void helber_(void){
void blackbox_init_(void){
void blackbox_(void){
void srgevent_(void){
void uv2sd_(void){
void dsteqr_(void){
void dptsv_(void){
void dgesvd_(void){
void ranset_(void){
void ranf_(void){
void cma_wrapup_(void){
void cma_stat_(void){
void cma_attach_(void){
void pbbufr_(void){
void cma_read_(void){
void cma_write_(void){
void cma_close_(void){
void cma_rewind_(void){
void cma_get_ddrs_(void){
void cma_detach_(void){
void util_ihpstat_(void){
void buset_(void){
void util_igetenv_(void){

+ lapack + blast IBM

blas/dasum.F

blas/dscal.F
blas/daxpy.F

blas/dtrsv.F

blas/dcopy.F

blas/idamax.F
blas/ddot.F

blas/xerbla.F

lapack/dgecon.F

lapack/drscl.F
lapack/dlabad.F

lapack/dlacon.F

lapack/dlamch.F

lapack/dlatrs.F
Benchmark al25t1 & al28t3

001 - al25t1 (domain 320x288 points, horizontal resolution 9.0 km, 37 vertical levels, time step 400 s, -fh24, 24 CPU’s)
Total execution time (wall clock time): 738.370022 seconds
Maximum resident set size : 352916 Kbytes/CPU

001 - al28t3 (domain 320x288 points, horizontal resolution 9.0 km, 37 vertical levels, time step 400 s, -fh24, 24 CPU’s)
Total execution time (wall clock time): 783.532621 seconds
Maximum resident set size : 328376 Kbytes/CPU

e927 - al25t1 (LACE LBC -> 001 one, 1CPU)

Total execution time (wall clock time): 75.134453 seconds
Maximum resident set size : 1652176 Kbytes/CPU

e927 - al28t3 (LACE LBC -> 001 one, 1 CPU)
Total execution time (wall clock time): 30.011163 seconds
Maximum resident set size : 1786132 Kbytes/CPU

al25t1 – 001 adiab run (domain 320x288 points, horizontal resolution 9.0 km, 37 vertical levels, time step 400 s, -fh24, 24 CPU’s)

Total execution time (wall clock time): 641.292667 seconds
Maximum resident set size : 323324 Kbytes/CPU

al28t3 – 001 adiab run (domain 320x288 points, horizontal resolution 9.0 km, 37 vertical levels, time step 400 s, -fh24, 24 CPU’s)
Total execution time (wall clock time): 580.973152 seconds
Maximum resident set size : 311896 Kbytes/CPU

The conclusion notes:

· We can’t confirm dramatically increasing of request memory for e927 on IBM. Even for 001 with physic little bit less memory is requested. What is significant is improving of walk clock time in ratio 1:2,5 for the newest version in e927. This attribute is also appreciable in 001 with adiabatic run and even with physic on. On other hand we have to pay for new physic by elapsed time, of course.

· The process of resources allocation, controlling the resource consumption, batch queuing system, parallel environment and performance for HPC applications are managed based on few application tools and AIX features on IBM p690 series.

LoadLeveler (LL) - queuing system

Work Load Manager (WLM) - tool for control allocate CPU, physical memory and I/O resources to processes

Parallel Operational Environment (POE) - running parallel MPI and OpenMP programs

Versatile System Resource Affinity Control (VSRAC) - interfaces between AIX, LoadLeveler and Parallel Environment for dynamic CPU resource set, memory affinity and processor allocation policy.

The behaviour described below depends on local implementation of these tools and their features. In our case each parallel jobs are assigned to class by some restriction and priority rules. The user has to declare class and resources for each job as the soft data_limit, type of job and etc, very similar as in standard QNS system. As was mentioned before for 001 we need about 330MB/CPU = 330x24CPU = 8GB as total value of memory for 001 configuration due current domain set. But this value is reported by AIX (ps aux) or LL (llsummary -l) statistic without contribution other tools described above. The problem is fact that amount of this contribution is not easy to estimate due to absence sufficient statistic tool for this “jigsaw”. We reached value 17 GB for first attempt with default set up (the consequence is that user has to ask for 17GB for submitting of job). It means that the 9GB are used for mentioned managing. By benchmark test we have got some value for MPI environment which setting declared the best performance. After testing al28t3 some compromise between memory requirement and elapsed time was reached.

MBX_SIZE

128MB -> 8MB

MP_BUFFER_MEM

64MB (default) -> 8MB

NCOMBFLEN

128MB -> 8MB

After this changes the requirement for total memory is 12GB (even elapsed time was improving about 5%). Based on consultation with IBM experts and experience from DWD the using of GANG scheduling (with pre-emption features) instead of BACKFILL one (unfortunately without pre-empting option at that moment) could have significant differences for amount of memory consumption (ratio 1:1,3).

Solving of this “problem” is still actual, some hints, comments to conclusions and others notes are welcome.

· The al28t3 version is recommended for installation (to skip problems in al28t1).

· Others platforms:

DEC – more than 60 subroutines were changed due to strict compiler behaviour (ordering in declaration, missing EXTERNAL declaration, double declaration in USE, syntax error, etc.). There was no successful porting reached due to insufficiency of current version of compiler (DIGITAL Fortran 90 V5.2-705) to accept generic declaration in a subroutine (e.g. call dot_product(x,y,z) and dot_product(x,y)). In this case contact deliver company for fixing compiler version.

SGI – different behaviour after successful compilation depends on machine. Probably there is problem also with version of compiler (C).

NEC – the implementation seems to be ok after resolving problem with MPI type.

Linux cluster – no information at that moment

· Attachment files :

intfb.tar.gz

- 2250 empty headers files

nam_e001_25.txt

- namelist for 001 al25t1

nam_e001_28.txt

- namelist for 001 al28t3

nam_e001_25_adiab.txt
- namelist for 001 al25t1 adiabatic run

nam_e001_28_adiab.txt
- namelist for 001 al28t3 adiabatic run

nam_e927_25.txt

- namelist for 927 al25t1

nam_e927_28.txt

- namelist for 927 al28t3

