

LAM-EPS activities in LACE

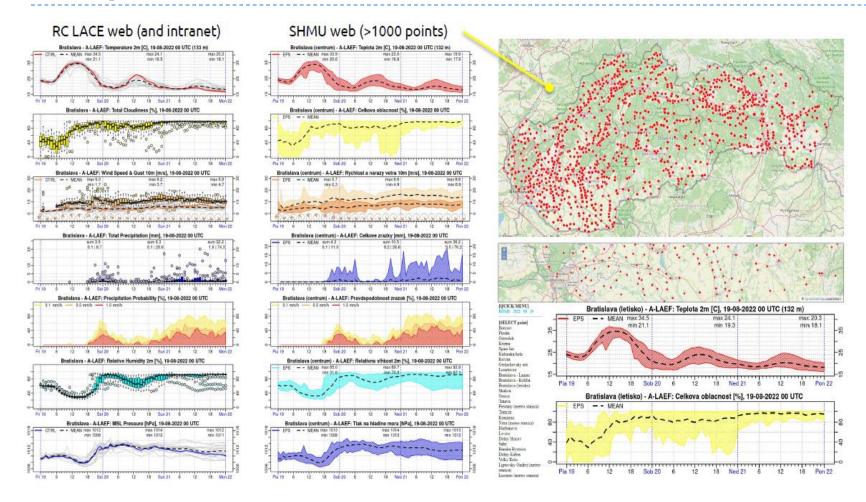
Clemens Wastl with contributions of RC LACE partners

Overview

- Operational upgrades
- New EPSgrams for A-LAEF
- Migration of operational suites of A-LAEF and C-LAEF to new Atos HPC in Bologna
- EDA in AROME-EPS (Hungary)
- SPP in C-LAEF (Austria)
- Statistical EPS
- Outlook and plans

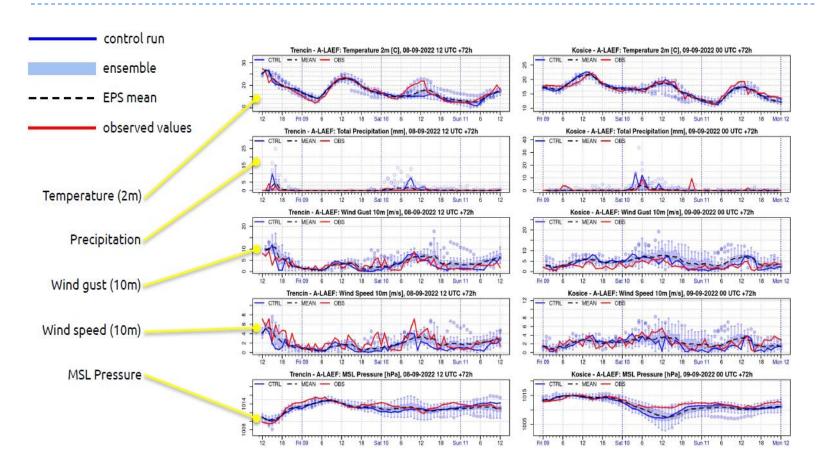
Operational ensembles

	A-LAEF	C-LAEF	AROME-EPS	
CMC	ALARO	AROME	AROME	
Code version	cy40t1	cy43t2	cy43t2	
Horizontal resolution	4.8 km	2.5 km	2.5 km	
Vertical levels	60	90	60	
Runs per day	2	8	2	
Forecast length	+72h (00/12 UTC)	+60h (00/12 UTC)	+48h (00/12 UTC)	
Members	16+1	16+1	10+1	
Assimilation cycle	yes (12h)	yes (3h)	-	
Coupling	ECMWF ENS (6h)	ECMWF ENS (1h)	ECMWF ENS (1h)	
IC perturbation	ESDA [surface], spectral blending/DFI [upper-air]	ESDA [surface], EDA, Ensemble-JK [upper-air]	-	
Model perturbation	ALARO-1 multi-physics + surface stochastic physics (SPPT)	hybrid stochastic scheme comb. of parameter and tendency perturbations	-	
LBC perturbation	ECMWF ENS (c903)	ECMWF ENS (c903)	ECMWF ENS (c903)	



New products for A-LAEF

Redesigned/upgraded Epsgrams and simplified version for the public SHMU webpage.



New products for A-LAEF

Verification of A-LAEF Epsgrams using automatic weather station data.

ECMWF Atos migration

Migration of operational suites of A-LAEF and C-LAEF to new Atos HPC in Bologna

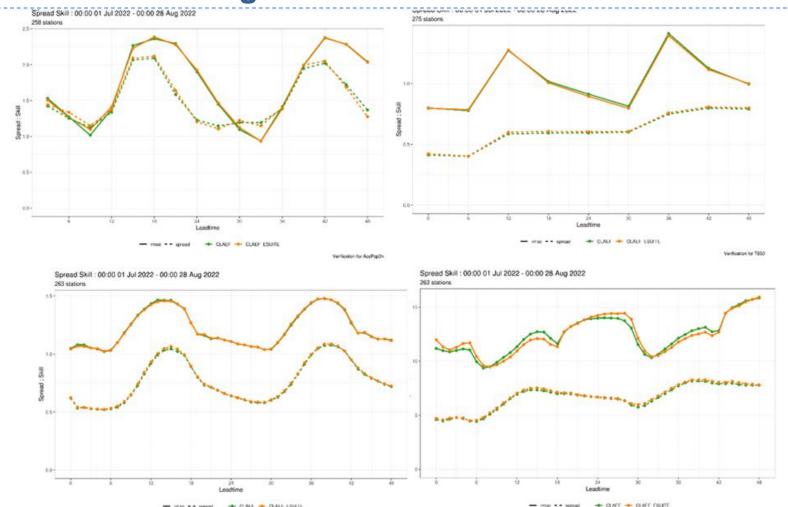
- First access to new HPC in March/April 2022
- Training course in March 2022
- A lot of time spent for ENV issues and optimizations
- Stability problems at the beginning
- Keeping consumption of SBUs on current level some jobs run substantially faster
- Double amount of SBUs available (expansions planned)
- Final migration has to be finished till end of October

A-LAEF:

- First suite of A-LAEF in August
- Upgrade of c903 LBC production (cy48t2) with multi-domain processing
- Ectrans connection to OPLACE to fetch observation files
- Child processes added for live monitoring of tasks' progress
- Conversion of FA files to grib not yet working
- Issue with shuffle in assimilation
- Still cy40t2, upgrade planned to cy43t2 oder cy46t1 in 2023

ECMWF Atos migration

- Migration of operational suites of A-LAEF and C-LAEF to new Atos HPC in Bologna
 C-LAEF:
 - First stable suite in July (coupling files, observations, etc. copied from ecgate)
 - Verification during the summer months (July, August) shows comparable results
 - A lot of optimization for tasks arrangement (number of cores, CPUs, etc.)
 - Start on operational TC2 users in August pre-operational suite running since end of August
 - Use of coupling files from ECMWF-ENS Esuite on Atos since September
 - Bug with spectral subtruncation
 - Differences between old and new couplingfiles (currently under investigation)
 - Random crashes of integration with these couplingfiles (trajectory out of atmosphere)
 - Some crashes at beginning of integration (maybe related to intel-mpi, open-mpi currently tested)
 - Ecaccess-triggering for operational users not yet working
 - Ectrans to ZAMG not yet working

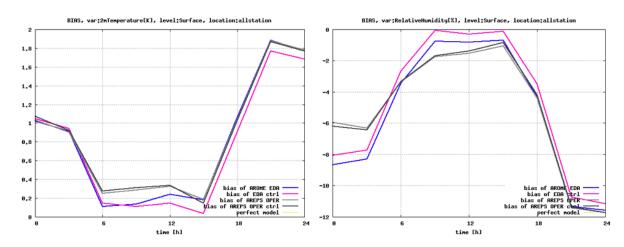


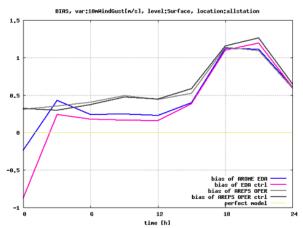
ECMWF Atos migration

Spread (solid) and skill (dashed) of operational C-LAEF (Cray, green) and C-LAEF E-suite (Atos, yellow) for 01/07/2022 - 28/08/2022 at all Austrian stations. 3h accum. precip, 850 hPa T, u-comp of wind, 2m RH.

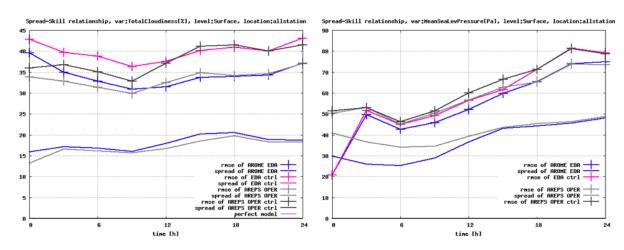
Introduction of EDA in AROME EPS (Hungary):

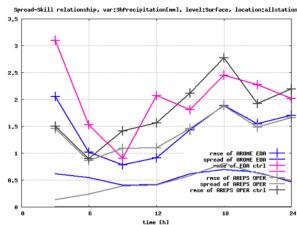
- Operational AROME-EPS is dynamical downscaling of the first 11 members of ECMWF-ENS at 2.5 km horizontal resolution and 60 vertical levels
- Experiments to introduce local perturbations using EDA
- 3 hourly assimilation cycle, using OI-main for surface and 3D-Var for upper air analysis
- 1-month experiment with EDA in CY43T2 (July 2021) plus 1 case study (1st July)
- Offline perturbation of observations after screening





Bias of 2m temperature and relative humidity and 10m wind gust based on operational AROME-EPS mean (grey), AROME-EPS-EDA mean (blue), control member of operational AROME-EPS (black) and control member of AROME-EPS-EDA (pink) averaged for 30 Hungarian stations in July 2021.





Spread (–) and RMSE (+) of total cloud cover, mean sea level pressure and precipitation based on operational AROME-EPS mean (grey), AROME-EPS-EDA mean (blue), control member of operational AROME-EPS (black) and control member of AROME-EPS-EDA (pink) averaged for 30 Hungarian stations in July 2021.

• Introduction of EDA in AROME EPS (Hungary):

- Applying EDA in the AROME-EPS causes noticeable improvements for surface parameters
- EDA decreases the error of surface parameters during day time, but it has slight impact during the evening hours
- Spread of 10m wind, 2m temperature and humidity increases with EDA for the whole forecast
- RMSE and spread of precipitation are increasing during the first few hours with EDA while the impact is almost neutral later
- Similar conclusions can be drawn for mean sea level pressure and cloudiness
- Hardly no impact on the upper air fields

Planned to become operational in 2023

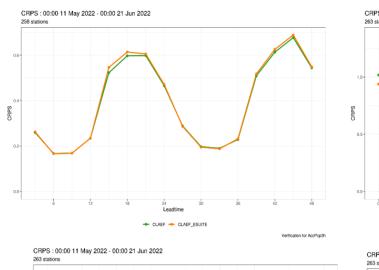
SPP in C-LAEF

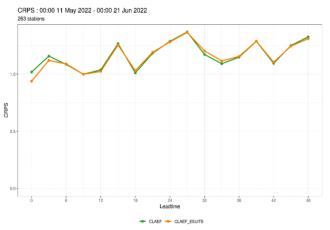
Extension of C-LAEF SPP scheme:

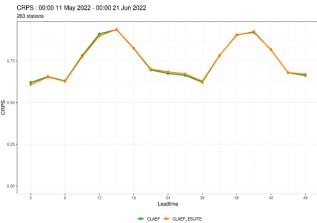
- operational C-LAEF comprises model error representation by perturbation of tendencies (shallow convection, microphysics, radiation) and parameters (turbulence)
- Implementation of full SPP parameter perturbation scheme to increase physical consistency
- Implementation of SPG pattern generator
- Set-up of E-suite with 13 perturbed parameters
- A lot of tuning necessary
- SPP is cheaper (5%) than hybrid system
- Verification of E-suite over 6 weeks in summer 2022
- Migration of E-suite to Atos
- Operationalization planned in 2023

Parameters which are perturbed stochastically in the SPP scheme currently implemented in a C-LAEF E-suite (yellow boxes).

elers					
Scheme	Parameter	Physical meaning	Default	Range	
Radiation	RSWINHF	Shortwave inhomogeneity lactor	1	0.6 - 1	
	RLWINHF	Longwave inhomogeneity factor	1	0.6 - 1	
	RCRIAUTI	Snow Autoconversion threshold	0.2e-3	0.2e-4 - 0.25e-3	
Microphysic	RCRIAUTC	Rain Autoconversion threshold	1e-3	0.4e-3 - 1e-3	
	VSIGQSAT	Constant for subgrid condensation	0.02	0 - 0.1	
	XLINI	Minimum mixing length	0	0 - 0.2	
	XCTD	Constant for dissipation	1.2	0.98 - 1.2	
	XCTP	Constant for T-P correlations	4.65	1.035 - 22.22	
Turbulence	XCEP	Constant for V-P correlations	2.11	0.225 - 4.0	
	XCED	Constant for dissipation of TKE	0.85	0.4 - 2	
	$XPHI_LIM$	Threshold value for Sc^{-1} and Pr^{-1}	3	1 - 4.5	
	XCET	Constant for transport of TKE	0.4	0.072 - 1.512	
	SLHDEPSH	Strength of SLHD	0.060	0.01 - 0.09	
Diffusion	SLHDKMIN	Diffusion function minimum	0	-1 - 1	
	SLHDKMAX	Diffusion function maximum	6	4 - 12	
L. III W. C. C.	VDIMAY	Critical Dichardson Number	0.9	0.02	
Surface	XFRACZ0	Coefficient of orographic drag	5	2 - 10	
	XCMF	Closure coefficient at bottom level	0.065	0 - 0.1	
Convection	XABUO	Coefficient of the buoyancy	1	0.7 - 1.5	
	XBDETR	Coefficient of the detrainment	1e-6	0 - 1	
	XENTR_DRY	Coefficient for dry entrainment	0.55	0.1 - 0.699	







SPP in C-LAEF

CRPS of operational C-LAEF with hybrid stochastic perturbation scheme (green) and C-LAEF E-suite with new SPP scheme (orange) for 3h precip., 2*m* accum. relative temperature, 2*m* humidity and v-component of 10m wind for the period 11 May-21 June 2022.

Statistical EPS

Statistical post-processing of EPS data at ZAMG

- SAMOS (standardized anomaly model output statistics) and GEMOS (global ensemble model output statistics) have been implemented at ZAMG to improve direct model output from ensembles (EMCW-ENS, GFS, C-LAEF)
- Current implementation comprises 2m T and RH, precipitation and 10m wind speed
- SAMOS/GEMOS is providing spatial forecasts and offers a seamless forecast from analysis over shortrange to middle-range forecasts.
- Verification shows that SAMOS/GEMOS is able to improve the BIAS of the EPSs significantly and is also able to correct the under-dispersion of the ensembles

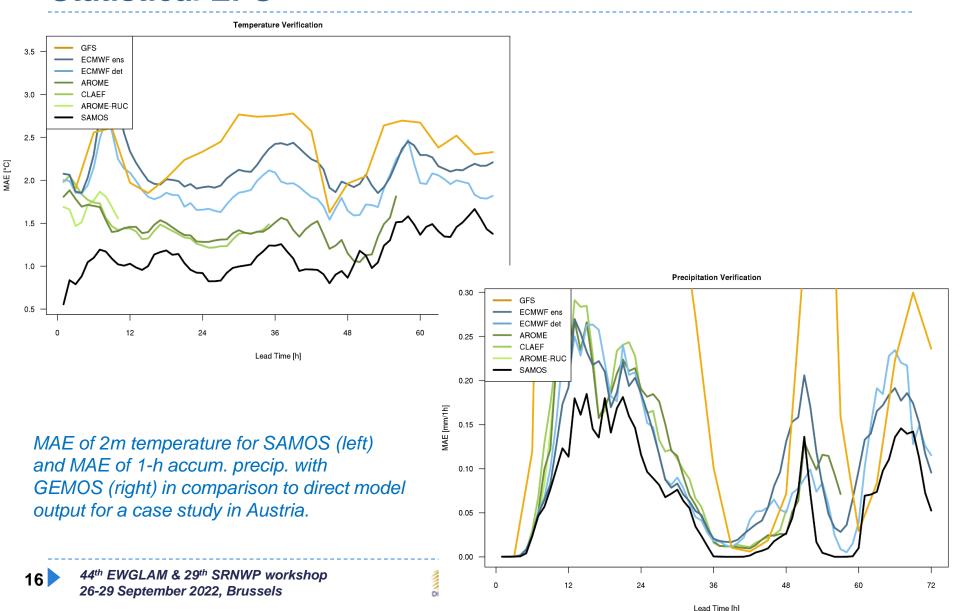
SAMOS (Standardized Anomaly Model Output Statistics):

$$\begin{split} &\frac{y-\mu_y}{\sigma_y} = \mathcal{N}(\mu,\sigma) \\ &\mu = b_0 + b_1 \, mean(\frac{ens_1 - \mu_{ens_1}}{\sigma_{ens_1}}) + b_2 \, mean(\frac{ens_2 - \mu_{ens_2}}{\sigma_{ens_2}}) + \dots \\ &\sigma = c_0 + c_1 \, sd(\frac{ens_1 - \mu_{ens_1}}{\sigma_{ens_1}}) + c_2 \, sd(\frac{ens_2 - \mu_{ens_2}}{\sigma_{ens_2}}) + \dots \end{split}$$

GEMOS (Global Ensemble Model Output Statistics):

Ensemble mean and standard deviation in SAMOS and GEMOS approach.

$$y = \mathcal{N}(\mu, \sigma) \mu = b_0 + b_1 m_1 + b_2 m_2 + \dots + lat + lon + alt + \sin(doy) + \cos(doy) \sigma = c_0 + c_1 s_1 + c_2 s_2 + \dots$$



Statistical EPS

Outlook & plans

Operational plans:

A-LAEF:

- Upgrade to cy43t or cy46t1 (to be decided)
- Upgrade of upper-air IC uncertainty representation by ENS BlendVar

C-LAEF:

- Operationalization of SPP in C-LAEF
- Upgrade to 1km until 2025
- Set-up of split system with ECMWF and **ZAMG HPC**

AROME-EPS:

- Operationalization of EDA in AROME-EPS
- Expansion of operational runs (e.g. 06 UTC)

Research & development:

- Development flow-dependent of model perturbations
- Stochastic perturbation of fluxes
- Flow-dependent B-matrix in assimilation
- EnVar in EPS
- Generation of ensemble members by deep learning algorithms
- Work on analog-based post-processing of probabilistic fields on a regular grid
- Development of new/improved probabilistic products
- Increase the reputation of EPS by user-oriented approaches

