Regional Cooperation for Limited Area Modeling in Central Europe

LAM-EPS activities in LACE

Clemens Wastl with contributions of LACE partners

OMS7

Czech Hydrometeorological Institute

- Operational upgrades
- Migration of operational suites of A-LAEF and C-LAEF to Atos HPC in Bologna
- EDA in AROME-EPS
- SPP in C-LAEF
- Flow dependent parameter perturbations in C-LAEF
- Statistical EPS
- Outlook and plans

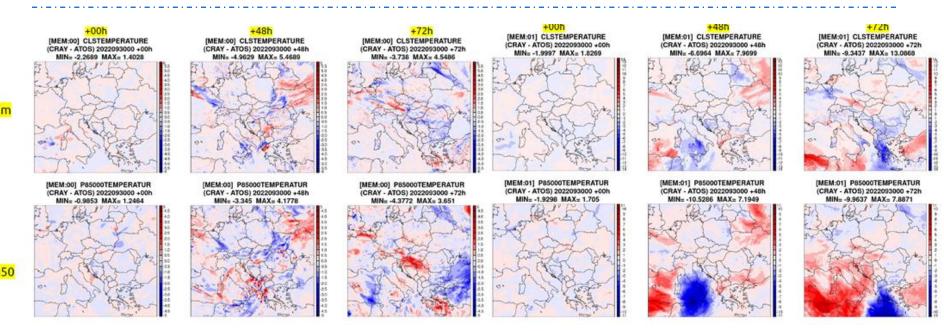
Sloven

Operational ensembles

- - -

	A-LAEF	C-LAEF	AROME-EPS	
CMC	ALARO	AROME	AROME	
Code version	cy40t1	cy43t2	cy43t2	
Horizontal resolution	4.8 km	2.5 km	2.5 km	
Vertical levels	60	90	60	
Runs per day	2	8	2	
Forecast length	+72h (00/12 UTC)	+60h (00/12 UTC)	+48h (00/12 UTC)	
Members	16+1	16+1	10+1	
Assimilation cycle	yes (12h)	yes (3h)	-	
Coupling	ECMWF ENS (6h)	ECMWF ENS (1h)	ECMWF ENS (1h)	
IC perturbation	ESDA [surface], spectral blending/DFI [upper-air]	ESDA [surface], EDA, Ensemble-JK [upper-air]	-	
Model perturbation	ALARO-1 multi-physics + surface stochastic physics (SPPT)	hybrid stochastic scheme comb. of parameter and tendency perturbations	-	
LBC perturbation	ECMWF ENS (c903)	ECMWF ENS (c903)	ECMWF ENS (c903)	

METEO


- Migration of operational suites of A-LAEF and C-LAEF to new Atos HPC in Bologna
 - Stability problems at the beginning a lot of time spent for ENV issues and optimizations
 - Parallel E-Suites of A-LAEF (August 2022) and C-LAEF (summer 2022) very similar results
 - New ECMWF-ENS coupling files in September (from release candidate cy47r3) big differences
 - Turned out that the differences already exist in the coupling files
 - Produced with 903: for A-LAEF they are produced by SHMU based on ECMWF-ENS in ECPDS; for C-LAEF and AROME-EPS they are produced directly by ECMWF
 - For the unperturbed control the differences are rather small (comparable to LBCs)
 - For the perturbed members the differences are much bigger and they grow very fast with lead-time due to stochastic physics
 - We had to cope with these differences operationalization of A-LAEF and C-LAEF on 19 October

Migration to Atos HPC

ARSO METEO

Slovenia

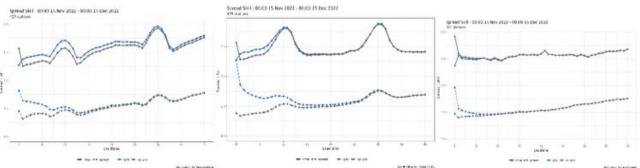
Differences of temperature at 2m (upper panel) and 850 hPa (lower panel) for 3 lead times (columns) between A-LAEF at Cray and Atos HPC. Control member (left 6 panels) and member 01 (right).

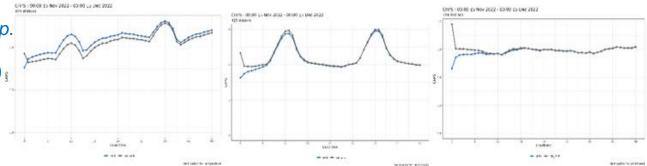
▶ 5

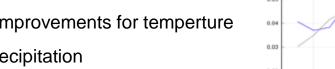
Czech Hydrometeorolog

Institute

- Possible expansions of C-LAEF with additional SBUs at Atos
 - About double the amount of SBUs on the new ECMWF HPC
 - Several possibilities: more members (currently 16+1), more long runs (currently 2), longer lead times (currently 60h), higher resolution (currently 2.5km), larger domain
 - Tests to assess the additional SBUs needed for some of these expansions
 - Lead time of operational C-LAEF 12 UTC run was expanded to +60h in May (from +48h)
 - Now focus on C-LAEF 1km (needs much more SBUs)
 - First test suites on ECMWF HPC based on the single precision code (saves about 30-40%)
 - New GeoSphere Austria HPC is expected at the end of 2023 set-up a kind of shared C-LAEF system (e.g. split of members, common scripting system, common assimilation, etc.)
 - Possibility of expansion of C-LAEF domain for other LACE countries

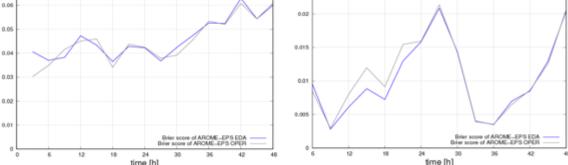

EDA in AROME-EPS




Introduction of EDA in AROME EPS (Hungary)

- Operational AROME-EPS is dynamical downscaling of the first 11 members of ECMWF-ENS
- Experiments to introduce local perturbations using EDA CY43T2
- Pre-operational AROME-EPS
 E-suite with EDA in August 22
- Intensively tested and verified (with HARP, in comparison to AROME-EPS)

Spread and RMSE (first), CRPS (second) of 2m temp. (left), 2m rel. hum. (middle) and 10m wind speed (right); based on the operational AROME-EPS (grey) and 7 AROME-EPS-EDA (blue).



Operationalization in March 2023

EDA in AROME-EPS

- Introduction of EDA in AROME EPS (Hungary)
- EDA in AROME-EPS has strong impact in first forecast hours
- Stronger impact in summer than in winter
- Most positive effect on wind speed and gusts, neutral for rel. humidity, slight improvements for temperture and precipitation

precipitation exceeding 1 mm, over Hungary 15 Nov-15 Dec 2022

Brier-score for 3 hourly sum of precipitation exceeding 1mm (left) and 6 hourly sum of precipitation exceeding 10mm (right), based on the operational AROME-EPS (grey) and AROME-EPS EDA (blue) forecasts.

6h precipitation exceeding 10 mm, over Hungary 15 Nov-15 Dec 2022

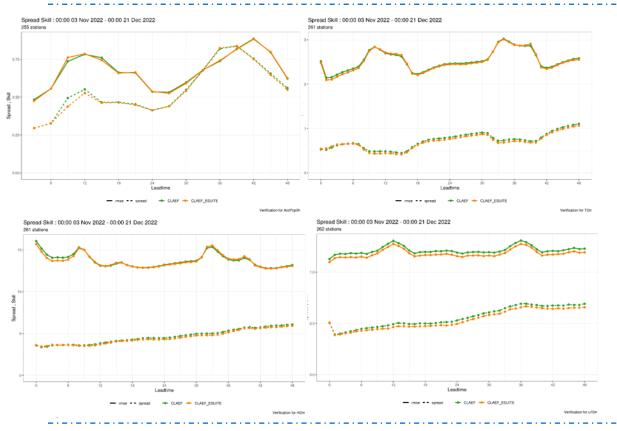
SPP in C-LAEF

Parameter perturbations in C-LAEF

- Operational C-LAEF comprises model error repr. by perturbation of tendencies (shallow convection, microphysics, radiation) and parameters (turbulence)
- Implementation of full SPP parameter perturbations to increase physical consistency
- Implementation of SPG pattern generator
- Set-up of E-suite with 13 perturbed parameters
- A lot of tuning necessary
- SPP is cheaper (5%) than hybrid system
- Verification of E-suite in summer and winter (6 weeks)
- Operationalization planned in April 2023

Scheme	Parameter	Physical meaning	Default	Range
Radiation	RSWINHF	Shortwave inhomogeneity lactor	1	0.6 - 1
	RLWINHF	Longwave inhomogeneity factor	1	0.6 - 1
	RCRIAUTI	Snow Autoconversion threshold	0.2e-3	0.2e-4 - 0.25e-3
Microphysic	RCRIAUTC	Rain Autoconversion threshold	1e-3	0.4e-3 - 1e-3
	VSIGQSAT	Constant for subgrid condensation	0.02	0 - 0.1
	XLINI	Minimum mixing length	0	0 - 0.2
	XCTD	Constant for dissipation	1.2	0.98 - 1.2
	XCTP	Constant for T-P correlations	4.65	1.035 - 22.22
Turbulence	XCEP	Constant for V-P correlations	2.11	0.225 - 4.0
	XCED	Constant for dissipation of TKE	0.85	0.4 - 2
	XPHI_LIM	Threshold value for Sc^{-1} and Pr^{-1}	3	1 - 4.5
	XCET	Constant for transport of TKE	0.4	0.072 - 1.512
	SLHDEPSH	Strength of SLHD	0.060	0.01 - 0.09
Diffusion	SLHDKMIN	Diffusion function minimum	0	-1 - 1
	SLHDKMAX	Diffusion function maximum	6	4 - 12
	VDIMAY	Critical Dishardson Number	0.9	0 0 2
Surface	XFRACZ0	Coefficient of orographic drag	5	2 - 10
	XCMF	Closure coefficient at bottom level	0.065	0 - 0.1
Convection	XABUO	Coefficient of the buoyancy	1	0.7 - 1.5
	XBDETR	Coefficient of the detrainment	1e-6	0 - 1
	XENTR_DRY	Coefficient for dry entrainment	0.55	0.1 - 0.699

Parameters which are perturbed stochastically in the SPP scheme currently implemented in a C-LAEF E-suite (yellow boxes).



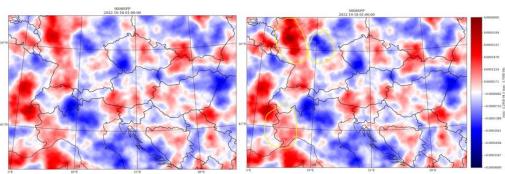
SPP in C-LAEF

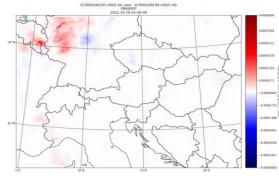
Spread (dashed) and RMSE (full) of operational C-LAEF with hybrid stochastic perturbation scheme (green) and C-LAEF Esuite with new SPP scheme (orange) for 3h accumulated precipitation (upper left), 2m temperature (upper right), 2m relative humidity (bottom left) and v-component of 10m wind (bottom right) for the period 03 November – 21 December 2022.

GeoSpher

Austria

- Development of flow-dependent parameter perturbations in C-LAEF
 - SPP scheme is purely stochastic: the perturbations are applied completely randomly without any consideration of the weather/flow situation (in contrast to SPPT)
 - Idea to develop a kind of intelligent perturbation scheme which applies perturbations especially in areas where most impact can be expected
 - First preparatory work in summer 2022 (literature research, code study, etc.)
 - Stay of Endi Keresturi in Vienna in October 2022
 - Focus on microphysics parameters in the first version (ZRDEP(S/G)RED, RCRIAUTI(C))
 - Pattern generator (SPG) and SPP not modified adapt existing pattern with weights
 - How to find areas of interest? Investigation of severel model fields for microphysics (cloudiness, precipitation, moisture profile, etc.)





Flow dependent perturbations

- Development of flow-dependent parameter perturbations in C-LAEF
 - Problem is conversion of these fields to weights (because of parallelization)
 - Cloud fraction used in a first step $^{(1)} w = \left(\frac{w'}{N_{I}} \times N\right) + 1 \quad {}^{(2)} \hat{P} = P e^{c + w\varphi}$

Impact of the cloudiness to the stochastic perturbation field of microphysics parameters in SPP. Upper left: SPP without flow dependency, upper right: SPP with flow dependency, lower panel: difference.


Flow dependent perturbations

- Development of flow-dependent parameter perturbations in C-LAEF
 - Impact of flow dependent SPP tested for one case in November 2022 (cold front)
 - Rather small impact, but algorithm principally works
 - More work planned for stay 2023: optimization, expansion to other parametrizations

GeoSph

Czech Hydromete Institute

Domain average of relative ensemble spread of two SPP experiments for a test case on November 3rd 2022. SPP_REF is standard SPP, SPP_NEW is flow dependent SPP. Spread is relative to an experiment without any model error representation.

- Development of flow-dependent parameter perturbations in C-LAEF
 - Another approach is currently under development at GeoSphere Austria
 - Use the large scale weather type classification to perturb selected parameters in the physics parametrizations (random parameter approach)
 - First version: external python based perturbation tool which reads weather type class and modifies C-LAEF fields (e.g. moisture) or namelist settings (e.g. temperature)
 - Tested for 2m diagnostics reduction of temperture BIAS
 - Tested for low stratus events reduction of model BIAS
 - Further investigations planned in 2023

15

- Statistical post-processing at GeoSphere Austria
 - SAMOS (standardized anomaly model output statistics) implemented to improve direct model output from ensembles (EMCW-ENS, C-LAEF) of 2m T and RH, precipitation and 10m wind (gusts soon)
 - SAMOS is providing spatial forecasts in a seamless forecast from analysis to middle-range forecasts
 - SAMOS is able to improve the BIAS significantly and is also able to correct the under-dispersion
- Analog-based post-processing on a regular grid (Croatia)
- Application of machine learning post-processing at OMSZ
 - OMSZ provides NWP forecasts to support partners in renewable energy sector
 - Post-processing helps to improve global radiation and near-surface wind forecasts
 - Application of EMOS (ensemble model output statistics with censored normal or censored logistic functions) and machine learning to improve AROME-EPS output

Czech Hydrometeor

- 16-18% CRPS improvement for radiation and 10-15% for wind speed
- Improvements visible in BIAS and ensemble spread
- Integration into the operating system planned.

Statistical EPS

loc fit, station-average, valid for 2022-09-23 - 2022-10-17 loc fit. station-average, valid for 2022-09-23 - 2022-10-17 Emos train51 TM Emos train51 Th Emos transit Lb Emos tran51 LN Emos trans1 TGEV mos train51 TGE loc fit. station-average, valid for 2022-09-23 - 2022-10-17 loc St. station-average, valid for 2022-09-23 - 2022-10-17 Ens Emos train51 Emos Inain51 LN mos train51 TGEV 12

Verification scores for 100m wind forecasts between 23 September and 17 October 2022 for 3 stations: CRPS (top left), coverage (top right), bias of ensemble mean (bottom left) and RMSE of ensemble mean (bottom right) based on raw AROME-EPS forecasts (black) and the predictive distribution functions provided by TN-EMOS (red), LN-EMOS (blue), TGEV-EMOS (green), TN-MLP (magenta), LN-MLP (cyan).

Outlook & Plans

Operational plans

- A-LAEF: Upgrade to cy43t or cy46t1 (to be decided)
- Upgrade of upper-air IC uncertainty representation by ENS BlendVar
- **C-LAEF:** Operationalization of SPP in C-LAEF (April)
- Upgrade to 1km until 2025
- Set-up of split system with ECMWF and GeoSphere Austria HPC
- **AROME-EPS:** Implementation of stochastic physics for model error representation

Research & development

- Flow-dependent B-matrix in assimilation
- EnVar
- Development of flow-dependent model perturbations
- Generation of ensemble members by deep learning algorithms
- Work on statistical post-processing of probabilistic fields
- Development of new/improved probabilistic products
- Increase the reputation of EPS by useroriented approaches

Presentations

- Presentation of LACE EPS activities at ACCORD ASW in Ljubljana in April 2022 and EWGLAM

in Brussels in September 2022

- Presentation of C-LAEF at ESSL Testbeds in June/July 2022
- Publications
 - C. Wastl, M. Belluš and G. Szépsó, 2022: EPS research and development in RC-LACE in 2021, <u>http://www.accord-nwp.org/meshtml/coordoper/ACCORD-NL2.pdf</u>
 - M. Belluš, M. Tudor, X. Abellan, 2022: "The mesoscale ensemble prediction system A-LAEF", ECMWF Newsletter, No. 172 - Summer 2022, p27-34, DOI: 10.21957/xa927ug5k0, https://www.ecmwf.int/node/20453
 - N. E. Gáspár, 2022: Evaluation of AROME-EPS radiation forecasts. BSc Thesis, Eötvös Loránd University, Department of Meteorology, Budapest.
 - G. Szépszó, K. Csirmaz, A. Kardos-Várkonyi, D. Lancz, A. Simon, F. Prates, M. Belluš, M. Neštiak, 2022: "A 2022. augusztus 20-ai előrejelzések meteorológiai háttere", LÉGKÖR, Vol. 67, No. 4, p181-188, DOI: 10.56474/legkor.2022.4.1

