

Report on stay at ZAMG
30/07~24/08, 2018, Vienna, Austria

ecFlow suite for new ALADIN-LAEF operations

::Author
Martin Belluš (SHMU)
martin.bellus@shmu.sk

::Table of Contents

Acknowledgement
Foreword

I. New ALADIN-LAEF system specifications
II. Creating ecFlow suite at ECMWF HPCF

Conclusions
References
Appendix

::Acknowledgement

I very much appreciate the help from Alena Trojakova and Florian Weidle. I am also grateful to the
whole ZAMG team for their hospitality and friendly atmosphere.

1

::Foreword

Enhanced ALADIN-LAEF system on 5 km grid and 60 vertical levels with recent ALARO-1
multi-physics under cy40t1, implemented stochastic physics for the surface prognostic variables
and new approach for perturbing surface observations was prepared and tested in November last
year (see Belluš, 2017: ​New ALADIN-LAEF phase I​, RC LACE Report). That time the substantial
increase of necessary computer resources prevented its operational implementation. However,
during discussion at the last LSC meeting it was agreed that the cost represented by System
Billing Units (SBUs) needed for new ALADIN-LAEF operations will be shared among the LACE
members who dispose with some SBUs (i.e. ECMWF full members like HR, SI, AT) and
cooperating Turkey (see Figure 1). Everything was successfully managed thanks to the initiative of
new LACE PM Martina Tudor. LACE has got also new account for running time-critical applications
at ECMWF HPCF (user ​zla​). Therefore, the main goal for this 4-weeks stay was nothing less then
the preparation of ecFlow suite for new time-critical application of ALADIN-LAEF system at
ECMWF HPCF.

Fig.1: Expected distribution of SBUs needed for new ALADIN-LAEF operations at ECMWF HPCF
among LACE partners and cooperating Turkey.

::I New ALADIN-LAEF system specifications

The first phase (Phase I) of planned operational changes to ALADIN-LAEF system towards the
higher resolution has already been started. Except the increased horizontal and vertical resolutions
(5 km, 60 levels) this upgrade comprises many other enhancements like change to the linear grid,
new version of model (cy40t1), IC uncertainty simulation by ESDA with the internal perturbation of
OBS, model uncertainty simulation by combination of SPPT and ALARO-1 multi-physics, and so

2

http://www.rclace.eu/File/Predictability/2017/Report_ZAMG_2017_11_mbell.pdf

on. It is the second major upgrade since the beginning of its operations in 2011. The first upgrade
happened in 2013, when the horizontal and vertical resolutions were increased from 18 to 11 km
and 37 to 45 vertical levels respectively. That time also the LAEF domain has changed and an
ensemble of surface data assimilation was implemented (Bellus et al. 2016). The most recent level
of upgrade is summarized in Table 1.

Tab. 1: ALADIN-LAEF system specifications for current and new version (new version is expected
to become pre-operational till the end of 2018 and operational in 2019).

ALADIN-LAEF current new

Code version cy36t1 cy40t1

Horizontal resolution 10.9 km 4.8 km

Vertical levels 45 60

Number of grid points 500x600 750x1250

Grid quadratic linear

Time step 450s 180s

Forecast length 72 h (00/12 UTC) 72 h (00/12 UTC)

Members 16+1 16+1

IC perturbation ESDA [surface],
breeding-blending [upper-air]

ESDA [surface], blending
(Phase I) / ENS BlendVar

(Phase II) [upper-air]

Model perturbation ALARO-0 multi-physics ALARO-1 multi-physics +
surface SPPT

LBC perturbation ECMWF ENS ECMWF ENS

Current ALADIN-LAEF system has run from the beginning of its operations under SMS (Supervisor
Monitoring Scheduler). However, the SMS becomes obsolete and its development has already
been stopped. At the present time it is supported only on old and already tested platforms.
Therefore, the SMS is being replaced by ecFlow. It uses object oriented methodology and modern
standardised components. The proprietary scripting language used by SMS (CDP - Command and
Display Program) has been replaced by Python, which is widely used in scientific and numeric
computing. Moreover, the current ALADIN-LAEF suite has not been technically updated for several
years. Thus we decided to start building our new operational ALADIN-LAEF suite from scratch
rather than converting the old one from SMS to ecFlow. Another reason for such a key decision is
being in quite big difference between the “current” and currently developed ALADIN-LAEF
components. All of them are now written in Perl.

3

Tab.2: Technical characteristics of the main tasks running on HPCF (not including preprocessing
and postprocessing).

Task nproc wallc time output SBUs Total SBUs

 values per member (*per 12 hour integration) 16+1 mem (*72h, 2x day)

canari 288 240-300s 518 MB 280-370 ~11050

blend 288 480-540s 518 MB 660-720 ~23460

laeff 288 900-960s 7.15 GB ~1200* ~244800*

Total SBUs consumption per year (an approximation only) ~102 mio

As one can see in the above table (Table 2), the total consumption for new ALADIN-LAEF
operations per year would be approximately one hundred millions of billing units (not including
preprocessing and postprocessing). That involves only the big tasks like ensemble of data
assimilation, spectral blending and model integration. The additional small tasks to fetch the OBS
files, convert LBCs and possibly to do some post processing as well are not included, but they
should be relatively cheaper. It can be further estimated, that about 1.34 TB of disk space will be
needed to store 1 day of full set of historical files for new ALADIN-LAEF system (72h forecast with
hourly frequency for 16+1 members and 00/12 UTC runs). This volume does not include the
assimilation and blending outputs. Their total volume per day would be only 34 GB (0.0336 TB).
Additionally, there will be needed another 225 GB of available storage to keep all current boundary
conditions for given day (2 runs). If we decide to store for safety reasons all of these data for
current day, it would be about 1.6 TB in total.

::II Creating ecFlow suite at ECMWF HPCF

After the detailed study of ecFlow documentation available at ECMWF website, it was decided to
follow the recommendations and proceed with building the suite definition file by Python script
(instead of shell or other alternatives). It has many advantages, e.g. Python API allows the entire
suite definition structure to be specified, checked and loaded into the ecFlow server (see Figure 2).
On-the-fly generated ALADIN-LAEF suite definition file has over 1.3k lines, while the Python script
which creates it has only about 250 lines of code. At the same time we have been able to use
recently developed LAEF Perl “bricks” as native ecFlow tasks (including Perl modules for system
setup and supporting functions), only with minor modifications involving necessary ecFlow client
communication (see Figure 2 and 3). That helped a lot, since this counts all together more than 3k
lines of reusable code.

4

Fig.2: New ALADIN-LAEF suite (Phase I) under the ecFlow environment (ecFlow GUI screenshot).
Suite definition file is generated by Python code, while all tasks, include files and configuration
modules are written in Perl.

Fig.3:​​ New ALADIN-LAEF suite (Phase I) flow chart depicting the particular tasks dependencies.

5

Before even starting we have to check whether the ecflow_server is running under our user. We
can do so either by looking at the processes (​ps -fu <user>​) or submitting a command
ecflow_client --ping --host=ecgb11 --port=4147​, where ecgb11 is our host and 4147 is user specific
ID (both uniquely identify the ecFlow server). In case the ecFlow server is not running, it can be
launched by the script ​ecflow_start.sh​ (localized e.g. in ​/usr/local/apps/ecflow/4.9.0/bin​).

Since ecFlow environment is not set up by default for ecgate’s users, it is also necessary at the
beginning of each session to export some ecFlow variables and load appropriate modules. This
can be done by sourcing following shell script:

export ECF_HOST=ecgb11

export ECF_PORT=4147

export ECF_LOGPORT=37647

echo "ECF_HOST="$ECF_HOST

echo "ECF_PORT="$ECF_PORT

echo "ECF_LOGPORT="$ECF_LOGPORT

module load ecflow

module load schedule

Now we can open the ecFlow graphical user interface with the command ​ecflow_ui (an example of
such GUI with loaded ALADIN-LAEF suite can be seen in Figure 2).

Suite definition file is dynamically generated by Python script (see also Appendix), which was
written during the stay at ZAMG. The ECF_MICRO character used for the code preprocessing was
redefined to “^” (caret). The reason is to have the least interaction with the original Perl code. The
default setting for ECF_MICRO is “%” (percent), which is used for the hash associative arrays in
Perl and thus is widely spread in the code. Even now, all the original caret signs (e.g. in some
regular expressions) must have been exchanged by “^^” (caret caret) to avoid their substitution by
ecFlow preprocessing.

In order to establish the communication between the ecFlow server and all LAEF jobs, we had to
implement the ecflow_client commands into the original Perl scripts (e.g. in canari.pl, blend.pl and
laeff.pl). In the following lines you are going to see some examples.

^include <pbs.h> - ASCII
Inclusion of the PBS header with the directives for queuing system on HPCF. The PBS header
may look like this (note that it can contain some ECF or other variables which are substituted by
the preprocessing):

#---

#PBS -N ^NAME^

#PBS -A ^ACCOUNT^

6

#PBS -q ^CLASS^

#PBS -m a

#PBS -M martin.bellus@gmail.com

#PBS -l EC_total_tasks=^NP^

#PBS -l EC_hyperthreads=1

#PBS -l EC_threads_per_task=1

#PBS -o ^ECF_JOBOUT^

#PBS -j oe

#---

^include <head.pl> - Perl
Here are defined ecflow_client commands to be used further from within our Perl code:

sub xinit() {

 system("ecflow_client --init=$$");

}

sub xabort() {

 system("ecflow_client --abort=$$");

}

sub xcomplete() {

 system("ecflow_client --complete");

}

sub xmeter($$) {

 my $name = shift;

 my $value = shift;

 system("ecflow_client --meter=$name $value");

}

sub xevent($) {

 my $n = shift;

 system("ecflow_client --event=$n");

}

sub xlabel($$) {

 my $name = shift;

 my $value = shift;

 system("ecflow_client --label $name $value");

}

7

Some ENV, ECF (ecFlow) and CNF (LAEF configuration variables) are also set and exported from
here and finally &xinit() is called to tell the ecFlow we have started.

^include <tail.pl> - Perl
This include is located usually at the end of script. It catches the signal and calls the &xabort() in
case of issues, otherwise it reports to ecFlow about successful task completion by invoking
&xcomplete().

Our ecFlow task scripts are also written in Perl in order to get the most out of the existing new
LAEF scripting system. The following modifications have been included into the Perl scripts to fully
benefit from the ecFlow functionality.

All “​exit(1)​” instances (i.e. fatal errors) were exchanged by sequence:
&xlabel(“error”, “...appropriate error message…”);

&xabort();

exit(1);

Some useful reporting to ecFlow was implemented via ​labels​:
&xlabel("run", "^YYYY^-^MM^-^DD^ ^HH^");

A processing state of the tasks was implemented using the combination of ecFlow ​meters and
labels​ as well, therefore it can be monitored directly from ecflow_ui:
&xmeter("step", 1);

&xlabel("status", "Converting ECMWF file to low spec.res. via ee927");

All the ecFlow scripts (Perl application tasks, Python script to generate the LAEF suite definition
file and the include files) are stored on ecgate server. The LAEF suite is generated there and also
loaded into the ecFlow server. On the other hand, the compiled binaries, namelists and input files
must be located on HPCF cluster (cca), because this is where the jobs are executed under the
queueing system (PBS). For more technical details please refer to the Appendix.

::Conclusions

The first functional ALADIN-LAEF ecFlow suite was created and tested under ​kmxy user on
ecgate/cca. Now it must be transferred under the dedicated LACE operational user ​zla, ​while the
next steps towards the time critical (TC) application must be done already in cooperation with the
user support section at ECMWF. This is planned in the very near future. There are also still several
technical details which must be addressed. The whole system must be tested under TC
environment together with real data flow. New products must be specified, set-up and their
distribution to the LACE partners have to be arranged. The preoperational run in parallel with the

8

old ALADIN-LAEF suite is highly desirable and it would be great if it can happen by the end of this
year.

::References

○ Framework for time-critical applications (ECMWF Technical Notes)
○ https://confluence.ecmwf.int/display/ECFLOW/User+Manual​ (ecFlow User Manual)
○ Iain Russell, Sándor Kertész, 2017: ecFlow training course 2017
○ Axel Bonet, John Hodkinson, 2018: ecFlow course 2018
○ Axel Bonet, 2018: ecflow - Python

::Appendix

Scripts on ecgate

Root:​​ /home/ms/at/kmxy/ecf/ (<ecf_root> further on)

Apps:​​ <ecf_root>/app
-rwxr-x---. 1 kmxy at 25839 Aug 22 12:33 blend.pl

-rwxr-x---. 1 kmxy at 40090 Aug 23 10:02 canari.pl

-rwxr-x---. 1 kmxy at 7743 Aug 24 13:43 getlbc.pl

-rwxr-x---. 1 kmxy at 16214 Aug 22 12:34 laeff.pl

-rwxr-x---. 1 kmxy at 1929 Aug 23 19:25 link_apps_to_tasks.pl

-rwxr-x---. 1 kmxy at 4934 Aug 24 12:27 oplace.pl

Includes:​​ <ecf_root>/include
-rw-r-----. 1 kmxy at 1573 Aug 21 16:45 head.pl

-rw-r-----. 1 kmxy at 294 Aug 22 10:57 pbs.h

-rw-r-----. 1 kmxy at 183 Aug 13 10:41 tail.pl

Suite definition:​​ <ecf_root>/def
-rw-r-----. 1 kmxy at 6328 Aug 28 09:26 create_laef.py

-rw-r-----. 1 kmxy at 35283 Aug 28 09:26 laef.def

-rw-r-----. 1 kmxy at 938 Aug 3 14:31 reload_laef.py

Suite definition file (laef.def) is being dynamically created by Python script

create_laef.py and loaded to the ecFlow server by another Python script reload_laef.py.

Suite:​​ <ecf_root>/laef
This LAEF suite file system is dynamically created by Perl script link_apps_to_tasks.pl

(<ecf_root>/app) and contains all necessary tasks. These tasks are then directly

submitted to the queuing system of HPCF. Each task is only a symbolic link to the

appropriate application script (<ecf_root>/app) and therefore the whole <ecf_root>/laef

file system can be anytime deleted and subsequently recreated from scratch.

Logs:​​ <ecf_root>/log
ECF log files and check points.

9

https://confluence.ecmwf.int/display/ECFLOW/User+Manual

Files on cca

Root:​​ /home/ms/at/kmxy/app_LAEF5F (<cca_root> further on)
drwxr-x--- 4 kmxy at 4096 Apr 26 2017 blend/nam - blending namelists

drwxr-x--- 4 kmxy at 4096 May 5 2017 canari/nam - assim namelists and constant files

drwxr-x--- 3 kmxy at 4096 Aug 23 17:37 getlbc/nam - namelists for LBC conversion

drwxr-x--- 4 kmxy at 4096 Apr 26 2017 laeff - e001 namelists (multi-physics)

drwxr-x--- 2 kmxy at 4096 Sep 12 15:56 setup - Conf_app.pm, Support.pm

The path to LAEF setup directory (<cca_root>/setup) must be defined in ecFlow suite on

ecgate via <ecf_root>/include/head.pl script:

set path to (app) Perl configuration modules on CCA (!)

use lib qw(

 /home/ms/at/kmxy/app_LAEF5F/setup

);

Conf_app.pm (Perl module) is the main suite configuration file where the executable paths

are defined together with working directory, INPUT/OUTPUT directories, expiration times,

LBC path, etc. Support.pm is a Perl module containing several functions which are

repeatedly used within the LAEF applications (e.g. &modif_namel, &shift_date, &gettrunc,

etc.).

 ​​ ​/\/\bell@2018

10

