Statistical method for the weighting function in the thermal radiation

Neva Pristov

Radiative transfer scheme

- δ-two stream approximation of radiative transfer equation for solar and thermal bands
- Adding method (solving linear system of equations)
- Economical computation (a good quality cost ratio)
- Separation of cloud and gaseous effects

Thermal radiative fluxes

 Improvements on the basis of Net Exchanged Rate (NER) formalism

 Better estimation of optical thickness of gaseous absorption for every layer in a simplified geometry and re-inject them into computation together with grey body effects

NER

- The atmosphere is divided in homogeneous layers
- Thermal exchange terms
 - Primary
 - Cooling to space (CTS)
 - Exchange with surface (EWS)
 - Exchange with adjacent layers (EAL)
 - Secondary
 - Exchange with other layers

NER

- The atmosphere is divided in homogeneous layers
- Thermal exchange terms
 - Primary as accurate as possible
 - Cooling to space (CTS)
 - Exchange with surface (EWS)
 - Exchange with adjacent layers (EAL)
 - Secondary approximate treatment
 - Exchange with other layers

Algorithm

- a calculation [I] with profile A and $\delta \tau_{gas}$ (CTS)
- a calculation [II] with profile B and $\delta \tau_{gas}$ (EWS)
- 3 calculations [III,IV,V] with profiles A,B,C and δ $\tau_{\rm gas}(EBL) = \delta \tau_{\rm min}$

Result is obtained:

$$[I] + [II] - [III] - [IV] + [V]$$

(multiplying by ΠB exept [V] and [VIII])

Algorithm – vertical temperature profile

- Profile A:
 - TIB = 1 at the ground and everywhere in the atmosphere => allows to suppress all other exchanges than 'cooling to space' (CTS)
- Profile B
 - TIB = 1 at the ground and TIB = 0 everywhere in the atmosphere => allows to suppress all other exchanges than 'exchange with surface' (EWS)
- Profile C
 The one corresponding to the physical truth => it mixes CTS, EWS with the 'exchanges between

layers' (EBL)

Algorithm

- a calculation [I] with profile A and $\delta \tau_{gas}$ (CTS)
- a calculation [II] with profile B and $\delta \tau_{gas}$ (EWS)
- 3 calculations [III,IV,V] with profiles A,B,C and δ $\tau_{\rm gas}(EBL) = \delta \tau_{\rm min}$
- 3 calculations [VI,VII,VIII] with profiles A,B,C and $\delta \tau_{gas}$ (EBL)= $\delta \tau_{max}$ = $\delta \tau_{prox}$

More accurate result is obtained: [I] + [II] – α .([III]+[IV]-[V]) - (1- α).([VI]+[VII]-[VIII]) + γ

[I] + [II] -
$$\alpha$$
 ([III]+[IV]-[V]) - (1- α) ([VI]+[VII]-[VIII]) + γ

How to calibrate α and γ ?

 $\gamma = 0$ in the statistical model; this implies

 $0 \ll \alpha \ll 1$ (0 corresponds to $\delta \tau_{min}$; 1 to $\delta \tau_{max}$)

- vertical profiles over globe (ARPEGE)
- for gas only atmosphere (clear sky)
- computation of EBL fluxes* using $\delta \tau_{min}$, $\delta \tau_{max}$ and exact computation

* Two possibilities EAL accurate or inside statistical fitting

EBL fluxes using $\delta \tau_{min}$ - green $\delta \tau_{max}$ - black $\delta \tau$ - red for some vertical profiles

Computation of α

α increases:

in the lower atmosphere in regions with temperature inversions

$$\alpha = N \left| \frac{p}{p} \right| + K \left| \frac{\partial c}{\partial \varphi} \right|$$

1. version:

$$\alpha = 0.3 \frac{p}{p} + 0.1$$

no vertical dependency for stability part

2. version:

$$\alpha = N$$
 p
 $+ K$
 p
 $\delta c \Theta$
 ρs
 $\delta \phi$

allows different treatment of troposperic and stratospheric inversions

Fitting function for N

Fitting function for K

Fitting function for N and K

$$\alpha = 0.29 \tanh(2\frac{p}{p}) + 0.07 \frac{p}{p} + 0.14 1 - \frac{p}{p} = 0.09 \frac{\partial c_p \Theta}{\partial \phi}$$

$$\alpha = 0.14 \tanh(3.5 \frac{p}{p_s}) + 0.07 \frac{p}{p_s} + 0.14 1 - \frac{p}{p_s} \stackrel{20}{\Rightarrow} 0 \frac{\partial c}{\partial \varphi}$$

EAL app.

EAL exact

Fitting function for N and K

Pushed towards 0 at the edges to prevent double counting of local effect for EAL=exact

Results

parameterized versus computed thermal flux

Geopotential - RMSE

Comparison between statistical fit 1 and 2

Only in geopotential

Slight improvements in stratosphere

Only 4 days

