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1 Generalities

e Here is discussed the gamma distribution used as the probability density function of number concentration of a
hydrometeor per its diameter. It is a function of three parameters: the number concentration of a hydrometeor
N, shape parameter pu, and slope parameter A\. A single-moment microphysics scheme has prognostical only A. A
double-moment scheme also has prognostical N, but p still must be prescribed (or diagnosed).

e ICE3 and LIMA use the generalized gamma distribution with one more parameter, which is not discussed in this
document, but one can redo the computations with it.

e The gamma distribution is defined as:
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where N [kg~!] is the total number of particles of a given hydrometeor, p; [kg:m~3] is the density of air with
water species, D [m] diameter of the hydrometeor, u is a dimensionless shape parameter, and A [m~!] is the slope

parameter. There is p; since N is in kg=!. The shape parameter y € R, > 0 to keep things simple as y < 0 is
not widely used.
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e Suppose r € R such that » > 0. Then the r-th moment of the gamma distribution is:
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e The value of \ is obtained from the mass fraction ¢ [kg-kg™?]:
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where m [kg] is the mass of the hydrometeor and p [kg-m~3] its density.

2 Diameters and their ratios

2.1 Definitions

e The mean volume diameter is the diameter for a monodisperse size distribution. In other words, if all drops are
of the same size at given ¢ and IV, then the mean volume diameter is their diameter. Mathematically speaking:
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o The effective diameter is weighted by D2, with proportional to the surface of the hydrometeor:
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2.2

The mass-weighted mean diameter is weighted with the mass, which is proportional to the third power of diameter
for a spherical particle, so it is defined for a spherical particle as:
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There are other diameters (e.g. number-concentration-weighted mean diameter or median diameter), but they
are probably not so useful at the moment.

Ratios
The ratio of Deyy to Dy is:
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The relationship I'(z + 1) = 2T'(z), « > 0 was used for simpliﬁcatiorﬂ The ratio is show in Figure
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The ratio of D,, to Dy is (also see Figure [1)):
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Finally, the ratio of D,, to Deys is (again see Figure [1):

Dy Dy Dy T(u+5)T(u+3)  (n+4)(u+3)[Cp+3)]°  p+4
Degy Dv Deyp T(u+4)T(n+4)  [(p+3)T(p+3)]°  w+3

> 1. (10)

Dy < Deff < Dy, VueR: > 0.
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Figure 1: Ratio of the D,, to Dy dependency on the shape parameter.

IThank you to Jan Masek for suggesting using this relationship.
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