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Abstract

The current version of turbulent scheme TOUCANS has been implemented in to local cycle CY36t1.
Influence of mixing length on quality of wind forecast was tested in implemented TOUCANS scheme.
The analyses in case studies shows improvement of wind forecast when using mixing length based on
TKE, which does not overestimate mixing in situation with strong wind. However the change in turbulent
mixing leads to cold bias in 2 meter temperature forecast.

Also diagnostic of wind gust computed from TKE was examined. The “default” TKE based wind gust
diagnostic tends to underestimation, so a modification of the formula was proposed (in order to account
for skewness of the wind gust distribution) and tested in one month winter period in Slovenia.



1 TOUCANS implementation

1.1 TOUCANS

TOUCANS (Third Order moments (TOMs) Unified Condensation Accounting and N-dependent
Solver (for turbulence and diffusion)) is a compact turbulence parametrisation. TOUCANS integrates
several ideas in turbulence parametrization: no existence of critical Richardson number R, anisotropy
of turbulence, prognostic treatment of Turbulence Kinetic Energy (TKE), Third Order Moments (TOMs)
parametrisation, and parametrisation of shallow convection.

No existence of Ri.. and anisotropy of turbulence are ensured by the shape of stability functions ¢,
x3. These are taken either from CCHO2 turbulent scheme [3] (with modifications) or from Quasi-Normal
Scale Elimination (QNSE) [11] (with fit ’extended’ for Ri < 0).

Prognostic treatment of TKE is adapted from pTKE [5] turbulent parametrisation (adapted version
called as eTKE).

Usage of TKE as prognostic variable enables computation of TKE dependent mixing lengths L. In
TOUCANS are available five different settings for mixing length computation.

1.2 TOUCANS implementation

TOUCANS has been implemented in to cycle CY36t1. The technical details of TOUCANS scheme
are presented in this subsection.

1.2.1 Turbulence scheme

The schemes with prognostic TKE (pseudo-TKE and TOUCANYS) are turned on with LPTKE=.TRUE.,
otherwise the Louis scheme is used. TOUCANS is turned on by LCOEFKTKE=.TRUE. .

LPTKE .TRUE. .FALSE.
LCOEFKTKE .TRUE. ‘ .FALSE. -
| Scheme: | TOUCANS | pseudo-TKE || Louis scheme |

1.2.2 TOUCANS emulation
We have 4 possibilities. A system versus B system and QNSE versus CCHO2 system:

| Switch | TRUE. FALSE. |
LCOEFK_QNSE QNSE scheme | CCHO2 scheme
LCOEFK_CCHO2A A system B system

The choice of turbulence scheme is connected with degrees of freedom . In the code we use these four:

’ Parameter \ Parameter name H CCHO2 A \ CCHO02 B \ QNSE A H QNSE B ‘
Cs C3TKEFREE 1.183 1.183 1.39 1.39
Rig. ETKE_RIFC 0.1865 0.1865 0.377 0.377
V= (CKCE)i NUPTKE 0.5265 0.477 0.504 0.4643
C. C_EPSILON 0.8709 0.7148 0.798 0.6772

pseudo-TKE pseudo-TKE is controled by one degree of freedom v (NUPTKE). The default value is

0.52.




1.2.3 Mixing lengths

The calculation of mixing length [, is not restricted to ’classical’ computation of z-dependent mix-
ing length (parameter CGMIXELEN="AY", or default CGMIXLEN="Z"; difference is in PBL height
computation):
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(x is Von Kdrmén constant, z is height, a,, ., by, and A,/ are tuning constants and Hyy; is PBL height)
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5 new appropriately combined mixing lengths are available in the code:
Parameter CGMIXELEN | R: > 0 Ri <0
EL1 L BL LBL
EL2 | Lpg min <\/ Lpr, Lae, LBL)
EL3 | min (LN, Lmax) LGC
LooL
BA | Ve, | Fee
ELS5 | min (LBL>LN> LBL

Lnaz - upper limit for mixing length in stable stratification;

Lgc is (1) converted to TKE type mixing length.
The dependence of mixing length L on TKE can be tuned by the parameter TKEMULT (by default TKEMULT=1):
L(e) = L(TKEMULT.e)

1.2.4 Shallow convection

Shallow convection can be parametrised:

1. with parametrisation after Geleyn 1987 (R:*)

2. with new 'moist’ R based on Pascal Marquet’s moist entropy potential temperature 641: Ri**

3. computing 'moist’ Ri from SCC (Shallow Convection Cloudiness) after [10]: Ri,, , or

4. using two Richardson numbers (hybrid mode): Ri,, for computation of source terms in TKE equation, and Ris;
(directly connected to #,1) for computation of stability functions in turbulent diffusion

| Switch I TRUE. \ FALSE. \
LCOEFK_THS] Ri* Ri*
LCOEFK_RIH hybrid Rin,, Ris, only Rip,
LCOEFK_RIM Ri,, from ext. SCC | Ri,, from SCC from Ri*/**

The ’sharpness’ of on and off switching of shallow convection parametrisation by R:** is controlled by ETKE_RIFC_MAF.
The default value is ETKE_RIFC_MAF=0.5. Higher value makes the transition from R < 0 to R: > 0 less steep.

Moist AntiFibrillation (AF) scheme can be turned off by setting XDAMP=0.0. The default value is XDAMP=1.0.

Rig and Ri,, have moist AF turned off by construction and are not influenced by XDAMP.



1.2.5 Third Order Moments (TOMs)

TOMs parametrisation is turned on by LCOEFK_TOMS=.TRUE. .

It is possible to tune individual TOMs terms by multiplying factors
(default values are 1.0):

| TOM term || Multiplying parameter
w3 ETKE_CGO1
w’26¢’ ETKE_CGO03

1.2.6 Security

The limitation for 7 against too small values is set by ETKE_BETA_EPS :
7 = 7 + ETKE_BETA _EPS At. The default value is 0.02.
The limitation for 7 against too large values is set by ETKE_GAMMA _EPS :

T = . The default value is 0.03.

T
1+ETKE-GAMMA EPS <7

2 Mixing length testing

Influence of mixing length on quality of wind forecast was tested in implemented TOUCANS scheme Two “typical”
winter syndromes were chosen for this purpose:

1. Forecast gives too strong south-west wind in north-east of Slovenia in situation with stable stratification near surface:

(a) case 14.12.2012 00:00 + 34h - false alarm for strong south-west wind in north-east of Slovenia.
(b) case 24.12.2012 00:00 + 36h - strong south-west wind in north-east of Slovenia.

2. Forecast onset of Bora wind with low intensity is too early in south-west of Slovenia:

(a) 28.12.2012 00:00 + 20h - too early forecaster onset of Bora wind with low intensity in south-west of Slovenia.
(b) 01.02.2012 12:00 + 30h - Bora wind with high intensity in south-west of Slovenia.

The model settings in these experiments were set to default values except for the mixing lengths (and except in Figs. 12
and 13) where all six possible (AY, EL1-5) mixing lengths were tested. For better orientation only the most relevant results
will be presented in Appendix A in the form of figures.

In both situations the usage of mixing length based on TKE qualitatively improves the forecast, it reduces the forecaster
wind speed in 1.(a) (see Fig.5 and Fig.6) and delays the onset of Bora wind in 2.(a) (see Figs. 33, 34, and 35). Also the
introduction of TKE based mixing length does not significantly deteriorate the quality of wind forecast in “counter cases” (see
Subsection A.2 and A.4).

The improvement of wind forecast is caused by the overestimation of mixing due too large mixing length AY. The problem
originates in diagnostic of PBL height dependent on Richardson number. In chosen cases is such diagnostic very inaccurate
(PBL height over 10 km) and leads to erroneous vertical profiles of mixing length (see Figs. 9, 19, and 28). Too strong mixing
then leads to too strong downward transport of momentum.

The change in turbulence mixing (with usage on TKE based mixing lengths) affects also mixing of heat and moisture
and leads to cold bias (smaller cold bias is already present for AY mix. length) of 2 meter temperature forecast. However the
inversion of temperature which appears by usage of EL1-5 is confirmed by observations, so the error in 2 meter temperature
forecast could be related also to other schemes of the model.

The TKE based mixing length produce less mixing (than AY) near surface in studied experiments. A tuning parameter
TKEMULT can be used to adjust the scheme (see Figs. 12 and 13).

3 Wind gust diagnostics

Wind gust G diagnostics based on TKE was tested in the implemented TOUCANS scheme. The “old” method is based
on friction velocity wu, (in the code in ACHMT subroutine) (dependent on bulk Richardson number and wind near surface)
[12]:

G = U + FACRAFu,, ?3)

where FACRAF is tuning constant.
The TKE based method (in the code in AROCLDIA subroutine) relates TKE to the wind gust[12]:

G = U + FACRAF vTKE, 4)

4



Both methods were tested in one month period in winter (December 2012, 28308 data points - observation versus forecast).
The friction velocity based method (LRAFTKE=.FALSE.) shows underestimation of wind gust (see Figs. 1, 3 and 4). The
“default” (G — U ~ v/ TKE) TKE based method tends to underestimate wind gusts with lower intensity. So a modification
of this method was performed by changing the exponent of TKE in Eq. (4). It appears that lower values of TKE exponent
(probably 1/4 is optimal) enable to introduce skewness (which is not considered in [12]) in to distribution of G — U and this
helps better TKE based diagnostic of wind gust (see Figs. 1-4).

Further testing of the modified diagnostic should be performed to confirm increased skill of this approach.
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Figure 1: Scatter-plot of observed gust wind - observed mean wind versus diagnostic of this difference
by : friction velocity (LRAFTKE=.FALSE.) or by TKE diagnostics; for December 2012 in Slovenia -
28308 points.
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Figure 2: Density plot of observed gust wind - observed mean wind versus square root of TKE. Lines are
fitting curves.
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Figure 3: Box-plots of difference between diagnosed and observed gust wind - mean wind.
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A Appendix: Mixing length testing - case studies
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A.1 False alarm for south-west wind - 14.12.2012 00:00 + 34h

wind10m pTKE_AY wind10m pTKE_EL1

Figure 5: Wind forecast for 14.12.2012 00:00 + 34h with AY (left) mixing length, and ELS5 (right) mixing
length. Orange line indicates position of verticall cross section (green circle start, orange circle end of
cross section) in Figs. 7-13.
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Figure 6: INCA 10 m wind analysis for 15.12.2913 at 10 UTC.
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Figure 7: Vertical cross section (according to Fig. 5) of temperature forecast on 14.12.2012 00:00 + 34h
with AY (left) mixing length, and EL5 (right) mixing length. Vertical coordinate is model level. Lower
part of the graphs displays model orography in [m].
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Figure 9: Same as Fig. 7 but for mixing length /,,, (in case of EL1-5 converted with Eq. (2)).
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Figure 10: Same as Fig. 7 but for TKE.
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Figure 12: Same as Fig 7 but for mixing lengths /,,,, and model settings are following: pTKE_AY: pTKE
scheme with AY mixing length, QNSEA _EL5: QNSE scheme emulated in A system with EL5 mixing
length, QNSEA_EL5_TM2: same as QNSEA_ELS5 but with TKEMULT=2, QNSEA_EL5_TM2: same as
QNSEA _ELS but with TKEMULT=4
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Figure 13: Same as Fig. 12 but for TKE.
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A.2 Strong south-west wind - 24.12.2012 00:00 + 36h

wind10m pTKE_AY wind10m pTKE_ELS

Figure 14: Same as Fig. 5 but forecast for 24.12.2012 00:00 + 36h and with ELS5 on the right picture.

wind10m pTKE_AY 2012122400 +36h wind10m pTKE_EL5 2012122400 +36h

Figure 15: Same as Fig. 14 but zoomed.
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Figure 16: Same as Fig. 6 but analyses for 24.12.2012 00:00 + 36h.
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Figure 18: Same as Fig. 17 but for specifique humidity.
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Figure 20: Same as Fig. 17 but for TKE.
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Figure 22: Time cross section(24.12.1012 00:00 from +06 till +36) of mixing length forecast for grid
point near Ptuj with AY (left) mixing length, and ELS5 (right) mixing length.
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Figure 23: Same as Fig. 22 but for wind.
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Hitrost wvetra 2012-12-24/2012-12-25
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Figure 24: Measurement of wind velocity at station Ptuj (data every half an hour for 24. and 25. 12
2012).
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A.3 ’Early Weak Bora’ case - 28.12.2012 00:00 + 20h

wind10m pTKE_AY wind10m pTKE_ELS

Figure 25: Same as Fig. 14 but forecast for 28.12.2012 00:00 + 20h.
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Figure 26: Same as Fig. 17 but forecast for 28.12.2012 00:00 + 20h and vertical cross section according
to Fig. 25.
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Figure 27: Same as Fig. 26 but for specifique humidity.
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Figure 28: Same as Fig. 26 but for mixing length /,,, (in case of EL1-5 converted with Eq. (2)).
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Figure 29: Same as Fig. 26 but for TKE.

20



WIND_W pTKE_AY WIND_W pTKE_EL5S

T T T T T T T T T T T T
E E ° ERNCC & & H : o § ook
Figure 30: Same as Fig. 26 but for wind.
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Figure 31: Same as Fig. 30 but zoomed.
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Figure 32: Same as Fig. 6 but analyses for 28.12.2012 00:00 + 20h.
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Figure 33: Time cross section (28.12.2012 00:00 from +06 till +24) of wind forecast for grid point near
Koper with AY (left) mixing length, and ELS (right) mixing length.
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Figure 34: Same as Fig. 33 but for grid point near Piran
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Figure 35: Measurement of wind velocity at station Koper (data every half an hour for 28. and 29. 12
2012).
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Figure 36: Same as Fig. 33 but for specifique humidity.
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Figure 37: Measurement of relative humidity on stations Koper and Piran (data every half an hour for 28.
and 29. 12 2012).
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A.4 ’Strong Bora’ case 01.02.2012 12:00 + 30h

wind10m pTKE_AY 2012020112 +30h wind10m pTKE_EL5 2012020112 +30h

Figure 38: Same as Fig. 14 but forecast for 01.02.2012 12:00 + 30h.
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Figure 39: Same as Fig. 6 but analyses for 01.02.2012 12:00 + 30h.
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