Parallel suites documentation

Jure Cedilnik (EARS), on stay at CHMI in Prague, 8/5/2005 – 28/5/2005 Supervisor: Jean-François Geleyn

1. Description of experiments

There were five parallel suites performed during my stay at CHMI:

adt: is the test with explic direction and implicit strength of surface stress
 The change in the code is in ACDIFUS: after the first computation leading to U+ and V+ at the lowest model level, C'd=Cd*SQRT((U+**2+V +**2)/(U**2+V**2)) is immediately computed and reused in a pure explicit way.

In the code (after computing ZN1(JLON,KLEV) and ZN2(JLON,KLEV)):

ZMUL=_ONE_/(_ONE_+ZELIM*(_ONE_-ZSUB1(JLON,KLEV-1)))

ZMULIE=SQRT((ZN1(JLON,KLEV)**2+ZN2(JLON,KLEV)**2)/MAX(ZEPS1,PU(JLON,KLEV)
2 +PV(JLON,KLEV)2))

 $ZN1(JLON,KLEV) = ZMUL*(ZELIM*ZN1(JLON,KLEV-1) + PU(JLON,KLEV)*(_ONE_-1) + PU(JLON,KLEV)*(_ONE_$

ZMULIE*ZXDR O(JLON)*ZIPOI(JLON,KLEV)))

ZN2(JLON,KLEV)=ZMUL*(ZELIM*ZN2(JLON,KLEV-1)+PV(JLON,KLEV)*(_ONE_-

ZMULIE*ZXDR O(JLON)*ZIPOI(JLON,KLEV)))

after that, we compute PSTRTU/V like this:

PSTRTU(JLON,KLEV)=ZMULIE*PCDROV(JLON)*PU(JLON,KLEV)

PSTRTV(JLON,KLEV)=ZMULIE*PCDROV(JLON)*PV(JLON,KLEV)

• adf: follow-up of constants

ALMAV=400. (instead of 300.),

EDK=5. (instead of 1),

VZ0CM=1.0E-4 (instead of 1.5E-4) and

VZIUSTAR0=10. (instead of 4.)

• adp: only correction of a bug in ACPLUIE

Instead of code: ZEVA=EVAP*(1.-ZRME(JLON)*(1.-REVGSL))

ZFON=FONT*(1.-ZRME(JLON)*(1.-REVGSL)), we put:

ZEVA=EVAP*SQRT(1.-ZRME(JLON)*(1.-REVGSL)) ZFON=FONT*SQRT(1.-ZRME(JLON)*(1.-REVGSL))

• adl: unified formula for mixing length computation (ACMIXLENZ) + adp

$$l_{m/h}(z) = \frac{kappa.z}{(1 + \frac{kappa.z}{lambda_{m/h}} [\frac{1 + e^{-a_{m/h}\sqrt{\frac{z}{H_{pbl}}} + b_{m/h}}}{-a_{m/h}\sqrt{\frac{z}{H_{pbl}}} + b_{m/h}}])}{beta_{m/h} + e^{-a_{m/h}\sqrt{\frac{z}{H_{pbl}}} + b_{m/h}}}$$

values of parameters are: a_m=4.5, a_h=5.0, b_m=3.0, b_h=0.8. H_{pbl} is computed using Martina Tudor's code.

- adm: adl + adf
- 2. Location of data and integration dates

All the scripts and namelists are on sx6: ~mma188/partests/\${exp}/... The binaries that were used are on kappa:

- binary used for adt: ~mma188/jure/ALADIN.exe
- binary used for adf is the operation one
- binary used for adp:
 - ~mma188/acpluie_bug_only/ALADIN.acpluie_bug_only.exe
- binary used for adl: ~mma188/followup/ALADIN.exe
- binary used for adm is the same as adl.

For parallel tests *adp*, *adf*, *adl* and *adm* four integrations were performed: assimilation started 01/03/2005 at 00 UTC and dates of integrations are 02/03/2005, 03/03/2005, 04/03/2005 and 05/03/2005 (all at 00 UTC).

For parallel test *adt*, assimilation started at 03/03/2005 (00 UTC) and the dates of integrations are 04/03/2005, 05/03/2005, 06/03/2005 and 07/03/2005 (again all at 00 UTC). Besides that period, the *adt* suite was also ran over Tatras storm case: assimilation started on 17/11/2004 at 00 UTC and three integrations were computed: 18/11/2004 at 12 UTC, 19/11/2004 at 00 UTC and 19/11/2004 at 12 UTC.

All the results are on archiv:

~mma188/aos/\${YYYY}/\${MM}/\${DD}/\${HH}/ICMSHD\${exp}+????.

The verification results are on voodoo:

~mma188/partests/parsuite_\${exp}/res,

and Tatras storm verification result is in

~mma188/partests/parsuite_adt/res/tatras_storm (again on voodoo).