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Why Ekman layer ?

• Gives exact solutions for the friction force and 
its derivatives (although under very simplified 
conditions)

• Ekman pumping/suction effects have influence 
on cyclogenesis/anticyclogenesis (secondary 
circulation)

• Consequencies of Ekman-type of friction are at 
least qualitatively observed in the boundary 
layer (Ekman-Taylor spiral)

 



Main constraints

• Balance between the Coriolis, PG and 
friction forces

• Constant density (horizontally + 
vertically) ⇒ geostrophic wind is 
constant with height ⇒ atmosphere is 
barotropic

• Exchange (eddy viscosity) coefficients 
are constant

• Valid only for neutral stratifications !



• Mixture of solid body rotation and 
irrotational axisymmetric vortex

• Core: uniform vorticity

• Outside of the core: shear vorticity 
cancels the curvature contribution

• Geostrophic adjustment

Rankine vortex - simple example to 

evaluate effects on cyclogenesis   



Construction of the vortex
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Ekman relationships for 
friction force

• Dependent on the angle between the 
geostrophic and actual wind: α (varies 
with geostrophic wind and latitude)

• Friction force is directly proportional to 
the geostrophic wind (generally)
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Ekman relationships and 
vorticity evolution

• We apply the rotation of the Ekman kind of 
friction force to vorticity equation (while 
concentrating only to the friction term)

• The effect of friction is directly proportional to 
vorticity (supposing a(Fx) horizontally uniform)
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What about our parameterisation ?

• K –  theory: Friction force depends on vertical 
variation of K- coefficient and wind shear

• We apply the wind shear from the Ekman 
relations (simulating the Ekman atmosphere)

















∂
∂

∂
∂

=
z

v
K

z
F ρ

ρ
1 ( )

z

v
lRiF

z

v
lK mm ∂

∂≈
∂
∂= 22, where



K-parameterisation vs. 
Vorticity equation

• We get a quadratic dependence on 
geostrophic wind and vorticity:
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Consequencies

• Spurious hodographs of the friction 
force for K- parameterisation

• Exaggerated friction force mainly for big 
geostrophic winds

• Non-proportional vorticity changes 
(cancelation of the Rankine vortex)

• Creation of vorticity outside of the core



Treatment

• Elimination of the first term in the Cx 
expression

• Solving a differential equation for the mixing 
length and specification of the boundary 
conditions with respect to the desired Ekman 
solution …

( ) ( )( ) ( )
2222

sin
gxgFxmFxFy

m
m

za
m

x UCUalaaa
z

l
la

K

el
F =








+−








∂
∂

−=
−α

= 0



Solution

• An exponential profile for the mixing length !

• From boundary conditions:
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Model implementation

• Purely exponential solution possible 
only in academic situations

• We have to specify « a » and « Zb »
• Possible way: exp. solution until the top 

of the Ekman layer + keeping the 
present formula above    +
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Two sets of mixing lengths

• Goal: to have smooth transition at the top of the Ekman 
layer (vertical derivations are there equal for both sets)
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Properties of the new scheme

• Not an arbitrary mixing length profile, 
but dependent on the latitude and wind 
shear

• Small vertical wind shears: parcel keeps 
longer its properties, hence the mixing 
length is longer and vice versa

• Small vertical wind shears: close to the 
present parameterisation, big shears: 
more uniform profile with height



Results

• Scheme is rather suppressing rapid cyclogenesis 
and the impact on false cyclogenesis is small 
and ambiguous

• The impact of Ekman friction on cyclogenesis 
is smaller and takes more time as secondary 
effects of turbulent transport of momentum and 
heat

• The global means give expected increase of 
static stability (due to suppression of the PBL 
top maxima of K coefficients)

• Scheme is stable and not much more CPU 
consuming ….



Future tests:

• Academic tests: more complicated 
models with « a », « f » latitude 
dependent, simulation of the barotropic 
decay of the cyclone

• Model: Tuning of the surface layer 
height and wind shears at this level (or 
of the limits for the height of the Ekman 
layer and of the PBL top)


