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Historical background (1)

• SLHD scheme (Semi-Lagrangian Horizontal Diffusion) implements

nonlinear diffusion by exploiting damping properties of semi-

Lagrangian interpolations

• diffusivity of semi-Lagrangian interpolations is controlled by mixing

accurate high order interpolator with diffusive low order one

• disadvantage of such approach is reduced accuracy, resulting in

worsened mass conservation seen as positive MSLP bias
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Mass (non)conservation

old SLHD scheme, MSLP difference against reference without SLHD

+36 h forecast
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Historical background (2)

• there was an attempt to improve SLHD conservative properties by

changing high order semi-Lagrangian interpolator

• cubic Lagrange polynomial was replaced with more accurate natural

cubic spline

• it indeed reduced positive MSLP bias, but detrimental effect on

other fields was seen

• in order to understand what is going on, detailed examination of

semi-Lagrangian interpolators followed
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From 2D/3D interpolators down to 1D interpolators

• high order 2D interpolators in model are composed of high and low

order 1D interpolators, acting on 12-point stencil:
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• similar approach is used in 3D case, employing 32-point stencil
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Requirements on decent 4-point 1D interpolator

1. linearity with respect to y = (y−1, y0, y1, y2):

F (x,y) = w−1(x)y−1 + w0(x)y0 + w1(x)y1 + w2(x)y2

2. invariace with respect to horizontal mirroring:

F (1 − x, y2, y1, y0, y−1) = F (x, y−1, y0, y1, y2)

3. invariace with respect to vertical shift:

F (x,y + c) = F (x,y) + c

4. reproducing of values y0, y1:

F (0,y)= y0

F (1,y)= y1

5. reproducing of linear function y = x:

F (x,−1,0,1,2) = x
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Family of cubic 4-point 1D interpolators

• when weights w−1, w0, w1, w2 are constrained to polynomials of

degree at most 3, interpolator F is restricted to the form:

F (x,y)= u(x)y−1 + v(x)y0 + v(1 − x)y1 + u(1 − x)y2

u(x)= a1x + a2x2
− (a1 + a2)x

3

v(x)=1 + (a2 − 1)x − (3a1 + 4a2)x
2 + 3(a1 + a2)x

3

a1, a2 ∈ R

• every decent 4-point cubic interpolator can be represented by point

in (a1, a2) plane

• requirement that F reproduces also quadratic function y = x2

(which implies second order accuracy) defines straight line:

6a1 + 2a2 = −1
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Family relations and important family members

• every second order accurate 4-point 1D interpolator F can be

written as weighted combination of cubic Lagrange polynomial Flag

and quadratic interpolator Fquad:

F = (1 − κ)Flag + κFquad κ ∈ R

• identity of some important inhabitants of (a1, a2) plane:

address name order of parameter κ
a1 a2 accuracy

0 0 linear interpolator 1 ——

−
1
4

1
4 quadratic interpolator 2 +1

−
1
3

1
2 cubic Lagrange polynomial 3 +0

−
1
2 1 quasi-cubic spline 2 −2

−
7
15

4
5 natural cubic spline 1 ——
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How to measure accuracy?

• accuracy of (a1, a2) interpolators was evaluated on sample of

harmonic test functions:

ym(x) = sin(2πmx/N) x ∈ [0, N ] m = 1,2, . . . , M

• source grid had N = 100 intervals, linear truncation with M = 49

was chosen

• each test function was interpolated onto 20 times finer target grid

• overall accuracy of interpolator was measured by MAE weighted by

function exp(−βm/M)

• parameter β was used to control significance of short waves

9



Accuracy maps

accuracy measured by weighted MAE

weight function exp(−25m/M) weight function exp(−m/M)
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Overshoots – global versus local interpolators

global interpolators

Lagrange polynomial

natural cubic spline
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Overshoots – global versus local interpolators

global interpolators local 4-point interpolators

Lagrange polynomial

natural cubic spline
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How to measure diffusivity?

• linear advection of harmonic wave performed by semi-Lagrangian

scheme:
∂u

∂t
+ c

∂u

∂x
= 0

u(xn, t0)= sin(kxn)

u(xn, ti)= u(xn − c∆ti, ti−1)

• integration timesteps ∆ti ≡ ti − ti−1 initialized randomly so that

Courant numbers c∆ti/∆x are uniformly distributed in interval [0,1)

• amplitude of numerically advected wave decays as exp[−γ(k)t],

which enables to determine interpolator damping rate γ(k)
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Diffusivity maps (1)

dimensionless damping rate

λ = 100∆x λ = 10∆x
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Diffusivity maps (2)

dimensionless damping rate

λ = 3.0∆x λ = 2.0∆x
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Equivalent diffusion

• fitting interpolator damping rate γ(k) with power function D · kp

gives estimate for strength D and order p of equivalent diffusion

• fit is good for long waves, where it gives 2nd order equivalent

diffusion for linear interpolator and 4th order equivalent diffusion

for class of second order accurate interpolators (quadratic, cubic

Lagrange polynomial, quasi-cubic spline, . . . )

• concept of equivalent diffusion is problematic for natural cubic

spline, where γ(k) deviates considerably from power law (long waves

are amplified, which would mean negative diffusion strength D)
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Cold and warm bubble test

neutrally stratified

resting background state

in domain 1 × 1 km,

∆x = ∆z = 10 m,

cold and warm bubble

with smooth edge

SL2TL ICI scheme with

advection of w, ∆t = 5 s

cubic Lagrange

interpolator, no other

source of damping
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Problem with natural cubic spline (1)

cubic Lagrange polynomial natural cubic spline
(reliable reference) (distortion and overshoots)
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Problem with natural cubic spline (2)

linear interpolator natural cubic spline, QM version
(details smoothed out) (distortion; overshoots cut off)
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Warm bubble test

• test with sharp bubble edge is very sensitive to model resolution

• due to jump at bubble edge numerical solution does not converge

as the resolution is increased ⇒ it is not good benchmark test

• initial state contains significant proportion of short waves and

numerical solution strongly depends on their damping

• it is suitable test for demonstrating damping properties of various

interpolators
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Damping properties of new interpolators (1)

quasi-cubic spline cubic Lagrange polynomial
(κ = −2) (κ = 0)
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Damping properties of new interpolators (2)

quadratic interpolator strongly diffusive second order
(κ = 1) accurate interpolator (κ = 6)
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SLHD bonus – Laplacian smoother

• following idea of Pierre Bénard, in the new SLHD scheme Laplacian

smoother S can be applied before semi-Lagrangian interpolations:

S = 1 + ε(∆x)2∂x
2

• using finite difference formula for second order derivative at inner

nodes and prescribing it to be zero at outer nodes gives:

S(y) =











1 0 0 0
ε 1 − 2ε ε 0
0 ε 1 − 2ε ε
0 0 0 1











·











y−1
y0
y1
y2











• high order interpolator F combined with Laplacian smoother S

damps more uniformly than diffusive interpolator alone, since it is

not much affected by distribution of origin points

• for stability reasons (explicitly treated diffusion), there is safety limit

on smoother strength ε
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Damping properties of new interpolators (3)

cubic Lagrange polynomial with cubic Lagrange polynomial with
smoother, (κ = 0, ε = 0.01) smoother, (κ = 0, ε = 0.02)
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Damping properties of new interpolators (4)

cubic Lagrange polynomial with linear interpolator
smoother, (κ = 0, ε = 0.04)
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Mass (non)conservation again

new SLHD scheme, MSLP difference against reference without SLHD

+36 h forecast
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Summary

• problems seen in old SLHD scheme led to the proposal of new semi-
Lagrangian interpolators with improved accuracy and higher scale
selectivity

• new interpolators are second order accurate, equivalent to 4th order
diffusion and their damping strength is highly adjustable

• additional degree of freedom is provided by Laplacian smoother
which is equivalent to 2nd order diffusion

• new semi-Lagrangian interpolators including TL/AD code were
implemented in ARPEGE/ALADIN cycle 35t2 and they will be
available in common ARPEGE/IFS cycle 36

• code now reached stable shape, but the full potential of new
interpolators was not explored yet (extensive 3D testing is needed)

• use of new semi-Lagrangian interpolators is not restricted to SLHD
scheme, they can be used also in static mode
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