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Outline

❏ Dynamical core in ACCORD

❏ SI time scheme

❏ Orographic terms in linear model (based on ideas of Fabrice Voitus and Jozef Vivoda)

❏ Idealised test cases

❏ Real simulations @200m
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Dynamical core in ACCORD

Basic equations

❏ hydrostatic primitive equation system (HPE) or Euler equations (EE); recently
implemented quasi elastic equation system (QE)

❏ prognostic variables v⃗, T, qs = ln(πs), in EE with w, q̂ = ln( p
π
)

Discretization

❏ spectral method for horizontal direction

❏ hybrid vertical coordinate η based on hydrostatic pressure π(η) = A(η) +B(η)πs;
A(top) = B(top) = 0, A(bottom) = 0, B(bottom) = 1

❏ finite differences or finite elements for vertical direction discretization

❏ semi-implicit or iterative centred implicit scheme for time discretization

❏ semi-Lagrangian advection
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Semi-Implicit time scheme

System evolution

dX

dt
= MX

Linearization

X = X∗ + X′,
∂

∂t
M −→ L∗

Using linear model L∗ we divide

dX

dt
= L∗[X]

t
+ (M−L∗)X

and discretize in time to obtain

Semi-implicit scheme

X+ − X0

∆t
= L∗

(
X+ + X0

2

)
+ (M−L∗)X+1

2

or

Iterative centered implicit scheme

X+(n) − X0

∆t
=

L∗X+(n) + L∗X0

2
+

(M−L∗)X+(n−1) + (M−L∗)X0

2

We know that both can be second order accurate in time when some care is taken (averaging
along semi-Lagrangian trajectory).
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Full model

Temperature

dT

dt
=

κT

κ− 1
(D + d)

Horizontal momentum

dv⃗

dt
= −RT

∇π

π
−∇ϕ−RT∇q̂ −

1

m

∂(p− π)

∂η
∇ϕ

Vertical momentum

dw

dt
=

g

m

∂(p− π)

∂η

Pressure departure

dq̂

dt
=

1

κ− 1
(D + d)−

1

π

dπ

dt

Surface pressure

dqs

dt
= −

1

πs

∫ 1

0

∇ · (mv⃗)dη

Diagnostic relations

dπ

dt
= v⃗ · ∇π −

∫ η

0

∇ · (mv⃗)dη′

ϕ = ϕs −
∫ 1

η

mRT

p
dη′

d =
p

mRT

(
∇ϕ

∂v⃗

∂η
− g

∂w

∂η

)

Definitions

D = ∇ · v⃗

κ =
cp

R

m =
∂π

∂η
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Basic state

Current:

❏ stationary

❏ resting

❏ hydrostatically balanced (πs
∗)

❏ dry

❏ isothermal (T ∗)

❏ with constant orography (∇ϕ∗ = 0)
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Basic state

New:

❏ stationary

❏ resting

❏ hydrostatically balanced (πs
∗)

❏ dry

❏ isothermal (T ∗)

❏ with constant orographic slope (in absolute value, |∇ϕ∗| ̸= 0)
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Linear model

Temperature

∂T

∂t
=

κT ∗

κ− 1
(D + d)

Horizontal momentum

∂v⃗

∂t
= −RT ∗∇π

π∗ −∇ϕ−RT ∗∇q̂ −
1

m∗
∂π∗q̂

∂η
∇ϕ∗

Vertical momentum

∂w

∂t
=

g

m∗
∂π∗q̂

∂η

Pressure departure

∂q̂

∂t
=

1

κ− 1
(D + d) +

1

π∗

∫ η

0

m∗Ddη′

Surface pressure

∂qs

∂t
= −

1

πs
∗

∫ 1

0

m∗Ddη

Diagnostic relations

∇ϕ∗ = ∇ϕ∗
s −

∫ 1

η

∇
(
m∗RT ∗

π∗

)
dη′

∇ϕ∗
s = gΛ∗

d =
π∗

m∗RT ∗

(
∇ϕ∗∂v⃗

∂η
− g

∂w

∂η

)

Definitions

New SI parameter

Λ∗ =
1

g
max (||∇ϕs||,

over domain)

m∗ =
∂π∗

∂η
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Helmholtz elimination

❏ formulate time evolution for the modified vertical divergence

❏ omit the first order terms in ∇ϕ∗, then ∂v⃗
∂t

is unchanged and all operators of the RHS of ∂d
∂t

apply on q̂

❏ formulate RHS of ∂d
∂t

as new vertical Laplacian operator applied on q̂

❏ with no slopes present the new vertical Laplacian collapses to the old one

❏ new vertical Laplacian has only real and negative eigenvalues in ”reasonable cases”

❏ discretize (we omit the details here)

❏ eliminate all variables up to horizontal divergence D

❏ solve the Helmholtz equation for D as usually
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 0.6

Λ∗ = 0. Λ∗ = 1.

31°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 0.9

Λ∗ = 0. Λ∗ = 1.

42°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 1.2

Λ∗ = 0. Λ∗ = 1.

50°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 1.5

Λ∗ = 0. Λ∗ = 1.

56°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 1.8

Λ∗ = 0. Λ∗ = 2.

61°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 2

Λ∗ = 0. Λ∗ = 2.

63°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 2.4

Λ∗ = 0. Λ∗ = 2.

67°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 3

Λ∗ = 0. Λ∗ = 3.

72°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 3.5

Λ∗ = 0. Λ∗ = 4.

74°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with increasing slope,
max (||∇ϕs||) = 4

Λ∗ = 0. Λ∗ = 4.

76°
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Linear model

❏ The ICI scheme in ACCORD uses horizontally constant coefficients.

❏ In
dX

dt
= L∗[X]

t
+ (M−L∗)X

the linear model L∗ is just a matrix with numbers, constant during the whole
integration.

❏ The Helmholtz matrix calculated from it is constant in time and applied in spectral
space on spectral coefficients.

❏ It means that we chose just one value for each of the reference parameters in the
linear model, being the same in the whole domain.

❏ With the added reference slope it is the same - one value is chosen for the whole
domain.

❏ It follows that we must chose a value which will work well in flat terain too.
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with very small height,
max (||∇ϕs||) = 0.1

Λ∗ = 0. Λ∗ = 1.

6°
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Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with very small height,
max (||∇ϕs||) = 0.1

Λ∗ = 0. Λ∗ = 2.

6°

12/16 EWGLAM/SRNWP 2024
1 / 1



Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with very small height,
max (||∇ϕs||) = 0.1

Λ∗ = 0. Λ∗ = 3.

6°

12/16 EWGLAM/SRNWP 2024
1 / 1



Idealized tests

Vertical velocity for the uniform wind over an Agnesi shaped mountain with very small height,
max (||∇ϕs||) = 0.1

Λ∗ = 0. Λ∗ = 4.

6°

12/16 EWGLAM/SRNWP 2024
1 / 1



Real simulations @200m

The basic algorithmic choices for ALARO confi-
gurations are:

❏ semi-Lagrangian advection with 4 iterations
for trajectory calculation

❏ PC time scheme with one iteration, cheap
variant (SL trajectories are not recalculated
in corrector)

❏ modified vertical divergence d4 for vertical
motion, transformation to vertical velocity w
in the non-linear model

❏ reference values of the linear model:
SITR=300K, SITRA=100K, SIPR=900hPa

❏ no decentering

❏ semi-Lagrangian horizontal diffusion applied
on all model variables + TKE,TTE,
hydrometeors

❏ linear truncation for all spectral fields except
orography; quadratic truncation of orography
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Real simulations @200m

ALARO physics

❏ radiation scheme ACRANEB2

❏ turbulence and shalow convection scheme TOUCANS, model 2

❏ scale aware deep convection and microphysics scheme 3MT

Initialization

❏ initialization with 3DVAR + surface DA (CANARI) for 2.325km run; dynamical
adaptation + DFI for 500m and 200m runs

Particular choices for ALARO@200m:

❏ cubic truncation of orography

❏ SITRA=50K

❏ no 3MT (deep convection), only STRAPRO (stratiform precipitation)
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Real simulations

Vertical velocity for the alpine case 19 August 2022 OUTC + 24hours.
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Real simulations

Vertical velocity for the alpine case 19 August 2022 OUTC + 24hours.

Λ∗ = 0 Λ∗ = 1
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Linearized slope in SI

Conclusions

❏ Including constant reference slope in the linear model of the ICI time
scheme helps to improve stability.

❏ With moderate values of the reference slope the accuracy of results is not
endangered.

❏ With very high values of the reference slope the results may be spoiled
with noise.
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Děkuji Vám za pozornost!
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