Regional Cooperation for Limited Area Modeling in Central Europe

ACC and RD

Research and Development

LACE novelties: Stability of the SI time scheme with modified linear model

Petra Smolíková (CHMI), Jozef Vivoda (SHMI)

Dynamical core in ACCORD

SI time scheme

Control parameters of the linear model

Stability analysis

Idealised test cases

Real simulations

1/15 EWGLAM/SRNWP 2021

ARSO METEO Slovenia

Dynamical core in ACCORD

- \Box hybrid vertical coordinate η based on hydrostatic pressure π
- hydrostatic primitive equation system (HPE) or Euler equations (EE); recently implemented quasi elastic equation system (QE)
- \Box prognostic variables $\vec{v}, T, q_s = \ln(\pi_s)$, in EE with $w, \hat{q} = \ln(\frac{p}{\pi})$
- moisture included
- Discretization
- spectral method for horizontal direction
- □ finite differences or finite elements for vertical direction
- semi-implicit or iterative centred implicit scheme for time
- semi-Lagrangian advection

Total time derivative
$$\dot{\psi} = \frac{\partial \psi}{\partial t} + \vec{v} \cdot \vec{\nabla} \psi + \dot{\eta} \frac{\partial}{\partial \eta}$$

ARSO METE

System evolution	Linearization
$\partial X - MX$)
$\frac{\partial t}{\partial t} = \mathcal{M}X$	∂_{i}

Using linear model ${\mathcal L}$ we divide

$$\frac{\partial X}{\partial t} = \mathcal{L}[\overline{X}]^t + (\mathcal{M} - \mathcal{L})X$$

Semi-implicit scheme

and discretize in time to obtain

3/15 EWGLAM/SRNWP 2021

$$\frac{X^+ - X^0}{\Delta t} = \mathcal{L}\left(\frac{X^+ + X^0}{2}\right) + (\mathcal{M} - \mathcal{L})X^{+\frac{1}{2}}$$

 $\mathcal{M} \longrightarrow \mathcal{L}$

Iterative centered implicit scheme

or

$$\frac{X^{+(n)} - X^{0}}{\Delta t} = \frac{\mathcal{L}X^{+(n)} + \mathcal{L}X^{0}}{2} + \frac{(\mathcal{M} - \mathcal{L})X^{+(n-1)} + (\mathcal{M} - \mathcal{L})X^{0}}{2}$$

Czech Hydrometeorological Institute

We know that both can be second order accurate in time when some care is taken (averaging along semi-Lagrangian trajectory).

We can linearize \mathcal{M} around a basic state X^* or we can use any linear preconditioner \mathcal{L} , allowing the convergence of our iterative algorithm.

We introduce a set of control parameters $\alpha, \beta, \gamma, \delta, \epsilon, \tau$ in \mathcal{M} with the following properties:

1. if all control parameters = 0 we obtain HPE system

2. if all control parameters = 1 we obtain EE system and get $\mathcal{M}_{control}$.

Then we linearize $\mathcal{M}_{control}$ around a basic state X^* to obtain $\mathcal{L}_{control}$, and afterwards we use

$$\mathcal{M} = \mathcal{M}_{control}(\alpha, \beta, \gamma, \delta, \epsilon, \tau = 1)$$

 $\mathcal{L} = \mathcal{L}_{control}(\alpha, \beta, \gamma, \delta, \epsilon, \tau \neq 1).$

Following the way how the control parameters were chosen, we can as well generally take

and get an approximation of the full EE system.

$$\mathcal{M}_{control}$$
 model

Temperature

$$\overset{\bullet}{T} = \kappa T \frac{\overset{\bullet}{\pi}}{\pi} - \alpha \left[\kappa T \frac{\overset{\bullet}{\pi}}{\pi} + \frac{RT}{C_v} D_3 \right]$$

Horizontal momentum

$$\stackrel{\bullet}{\vec{v}} = -RT\frac{\vec{\nabla}\pi}{\pi} - \vec{\nabla}\phi - \beta \left[RT\vec{\nabla}\hat{q} + \left(\frac{1}{m}\frac{\partial p}{\partial \eta} - 1\right)\vec{\nabla}\phi\right]$$

$$\dot{w} = \frac{g}{m} \frac{\partial \gamma(p-\pi)}{\partial \eta}$$

Pressure departure

$$\hat{q} = -\delta \left[\frac{1}{1-\kappa} D_3 + \frac{\delta}{\pi} \right]$$

Surface pressure

$$\dot{q_s} = -rac{1}{\pi_s} \int_0^1 ec
abla(mec v) d\eta$$

Diagnostic relations

$$\hat{\pi} = \vec{v} \cdot \vec{\nabla} \pi - \int_{0}^{\eta} \vec{\nabla} (m\vec{v}) d\eta'$$

$$\phi = \phi_{s} - \int_{\eta}^{1} \frac{mRT}{\pi} d\eta' - \int_{\eta}^{1} \epsilon \left(\frac{\pi}{p} - 1\right) \frac{mRT}{\pi} d\eta'$$

$$D_{3} = D + \frac{\pi + \tau(p - \pi)}{mRT} \left(\vec{\nabla} \phi \frac{\partial \vec{v}}{\partial \eta} - g \frac{\partial w}{\partial \eta}\right)$$

HYDROSTATIC SYSTEM with $\alpha, \beta, \gamma, \delta, \epsilon, \tau = 0$ NH SYSTEM with $\alpha, \beta, \gamma, \delta, \epsilon, \tau = 1$

Parameter γ

ARSO METE

Parameter $\gamma = SITR/SITRA$ in the ACCORD system. Values $\gamma > 1$ were shown to increase stability of the SI time scheme.

[P. Bénard, 2004: On the use of a wider class of linear systems for the design of constant-coefficients semi-implicit time-schemes in NWP, doi=10.1175/1520-0493(2004)132<1319 OTUOAW>2.0.CO;2]

Amplification factor from the SHB type stability analysis: blue indicates stable region, red and white means very unstable

S

ZAMG

Control parameters relations

Full elimination for the normal structure modes of the simplified equation system having the shape $X(x,\sigma) = \hat{X} \exp(ikx + i\omega t)\sigma^{(i\nu - \frac{1}{2})}$

gives

the structure equation for given $\omega,k,
u$

$$\omega^{4} - c^{2}\omega^{2} \left(\beta \delta \frac{\left(\nu^{2} + \frac{1}{4}\right)}{H^{2}} + \left(1 - \frac{\epsilon \delta - \kappa \alpha}{(1 - \kappa)}\right)k^{2} \frac{N^{2}H^{2}}{c^{2}\left(\nu^{2} + \frac{1}{4}\right)} + \frac{\epsilon \delta - \kappa \alpha}{(1 - \kappa)}k^{2}\right) + \beta \delta c^{2}N^{2}k^{2} = 0$$

Then

$$\left. \begin{array}{c} \beta = \epsilon \\ \\ \frac{\epsilon\delta - \kappa\alpha}{(1 - \kappa)} = \beta\delta \end{array} \right\} \Rightarrow \alpha = \beta\delta$$

to ensure the structure equation collapses to hydrostatic (if $\alpha, \beta, \gamma, \delta, \epsilon, \tau = 0$) and fully elastic one (if $\alpha, \beta, \gamma, \delta, \epsilon, \tau = 1$). We apply only two possible settings with only one free parameter *h*:

SET2

$$\alpha = \delta = h$$

$$\beta = \epsilon = \tau = 1$$

Stability analysis

Amplification factor from the SHB type stability analysis in the simplified context : isothermal atmosphere with $T \neq T^*$, one vertical mode, one wave number etc. \Rightarrow we see one snapshot from a multiparametric space blue indicates stable region, red and white means very unstable;

Stability analysis

Amplification factor from the SHB type stability analysis in the simplified context : isothermal atmosphere with $T \neq T^*$, one vertical mode, one wave number etc. \Rightarrow we see one snapshot from a multiparametric space blue indicates stable region, red and white means very unstable;

Idealised experiments

Straka density current with $\Delta x = \Delta z = 25 m$ $\Delta t = 1 s$ after 600s, the right part of the potential temperature field

🗆 PC NH

- □ SI SET1 in linear model: h = 5
- □ SI SET2 in linear and full model: h = 0.1
- □ SI SET2 in linear and full model: h = 0.01
- □ SI SET2 in linear and full model: h = 0.001

🗅 SI HYD

Idealised experiments

Non-linear non-hydrostatic flow over Agnesi shaped mountain with

 $U = 4ms^{-1}$ $N = 0.01s^{-1}$ $\Delta x = 80 m$ $\Delta z = 180 m$ $\Delta t = 2 s,$ after 6000 s and with a sponge layer at the top, vertical velocity field

DC NH

- □ SI SET1 in linear model: h = 5
- □ SI SET2 in linear and full model: h = 0.1
- □ SI SET2 in linear and full model: h = 0.01
- □ SI SET2 in linear and full model: h = 0.001

🗅 SI HYD

Lee waves behind Krusné hory, 19 February 2019 00 UTC + 11 hours ALARO @ 2.325km, 87 vertical levels

orography

10m wind + wind direction

Real simulations

SI SET2 in linear and full model: h = 0.1

PC NH

SI SET1 in linear model: h = 5

SI SET2 in linear and full model: h = 0.01

SI SET2 in linear and full model: h = 0.001

SI HYD

13/15 EWGLAM/SRNWP 2021

ARSO METEC

Slovenia

- the model L used in the SI time scheme for the separation of "linear"terms and "non-linear"residuum may be chosen arbitrarily, provided it ensures the convergence of the proposed iterative algorithm
- □ if \mathcal{L} is defined as a linearization of $\mathcal{M} = \mathcal{M}_{control}(\alpha, \beta, \gamma, \delta, \epsilon, \tau \ge 1)$ around a basic state X^* , the stability of the SI time scheme may increase
- □ the stability of SI time scheme used with a modified equation set using $\mathcal{M} = \mathcal{M}_{control}(\alpha, \beta, \gamma, \delta, \epsilon, \tau \leq 1)$ may also be increased while the non-hydrostatic features of the flow are kept
- The SI time scheme algorithm of ACCORD would allow the vertical dependence of control parameters. We plan to investigate this in the near future.

ARSO METEO Slovenia

