$A C C=R D$

A Consortium for COnvection-scale modelling Research and Development

Dynamics in LACE - towards hectometric scales

```
Petra Smolíková (CHMI), Alexandra Craciun (NMA), Mario Hrastinski (DHMZ),
Nika Kastelec (ARSO), Jozef Vivoda (ECMWF)
```


Now
\square Dynamical core in ACCORD
\square SI time scheme
\square Orographic terms in linear model (based on work of Jozef Vivoda and Fabrice Voitus)

- Some equations
- Idealised tests
- Real simulations ©200m
\square Vertical velocity definition in nonlinear model (based on work of Fabrice Voitus)
- Real simulations ©200m

Basic equations
\square hydrostatic primitive equation system (HPE) or Euler equations (EE); recently implemented quasi elastic equation system (QE)
\square prognostic variables $\vec{v}, T, q_{s}=\ln \left(\pi_{s}\right)$, in EE with $w, \widehat{q}=\ln \left(\frac{p}{\pi}\right)$

Discretization
\square spectral transform method for horizontal directionhybrid vertical coordinate η based on hydrostatic pressure $\pi(\eta)=A(\eta)+B(\eta) \pi_{s}$; $A(t o p)=B(t o p)=0, A($ bottom $)=0, B($ bottom $)=1$
\square finite differences or finite elements for vertical direction discretizationsemi-implicit or iterative centred implicit scheme for time discretizationsemi-Lagrangian advection

Semi-Implicit time scheme

nwp central europe

System evolution

$$
\frac{d X}{d t}=\mathcal{M} X
$$

Linearization

$$
X=\mathbf{X}^{*}+\mathbf{X}^{\prime}, \quad \mathcal{M} \longrightarrow \mathcal{L}^{*}
$$

Using linear model \mathcal{L}^{*} we get

$$
\frac{d X}{d t}=\mathcal{L}^{*}\left[\overline{X]}^{t}+\left(\mathcal{M}-\mathcal{L}^{*}\right) X\right.
$$

and discretize in time to obtain

Semi-implicit scheme

$$
\frac{\mathbf{X}^{+}-\mathbf{X}^{0}}{\Delta t}=\mathcal{L}^{*}\left(\frac{\mathbf{X}^{+}+\mathbf{X}^{0}}{2}\right)+\left(\mathcal{M}-\mathcal{L}^{*}\right) \mathbf{X}^{+\frac{1}{2}}
$$

Iterative centered implicit scheme
or

$$
\frac{\mathbf{X}^{+(n)}-\mathbf{X}^{0}}{\Delta t}=\frac{\mathcal{L}^{*} \mathbf{X}^{+(n)}+\mathcal{L}^{*} \mathbf{X}^{0}}{2}+\frac{\left(\mathcal{M}-\mathcal{L}^{*}\right) \mathbf{X}^{+(n-1)}+\left(\mathcal{M}-\mathcal{L}^{*}\right) \mathbf{X}^{0}}{2}
$$

We know that both can be second order accurate in time when some care is taken (averaging along semi-Lagrangian trajectory).

Full model

nwp central europe
Temperature

$$
\frac{d T}{d t}=\frac{\kappa T}{\kappa-1}(D+d)
$$

Horizontal momentum

$$
\frac{d \vec{v}}{d t}=-R T \frac{\nabla \pi}{\pi}-\nabla \phi-R T \nabla \hat{q}-\frac{1}{m} \frac{\partial(p-\pi)}{\partial \eta} \nabla \phi
$$

Pressure departure

$$
\frac{d \widehat{q}}{d t}=\frac{1}{\kappa-1}(D+d)-\frac{1}{\pi} \frac{d \pi}{d t}
$$

Diagnostic relations

$$
\begin{aligned}
\frac{d \pi}{d t} & =\vec{v} \cdot \nabla \pi-\int_{0}^{\eta} \nabla \cdot(m \vec{v}) d \eta^{\prime} \\
\phi & =\phi_{s}-\int_{\eta}^{1} \frac{m R T}{p} d \eta^{\prime} \\
d & =-\frac{p}{m R T}\left(\nabla \phi \frac{\partial \vec{v}}{\partial \eta}-g \frac{\partial w}{\partial \eta}\right)
\end{aligned}
$$

Surface pressure

$$
\frac{d q_{s}}{d t}=-\frac{1}{\pi_{s}} \int_{0}^{1} \nabla \cdot(m \vec{v}) d \eta
$$

Definitions

$$
\begin{aligned}
D & =\nabla \cdot \vec{v} \\
\kappa & =\frac{c_{p}}{R} \\
m & =\frac{\partial \pi}{\partial \eta}
\end{aligned}
$$

Full model

nwp central europe
Temperature

$$
\frac{d T}{d t}=\frac{\kappa T}{\kappa-1}(D+d)
$$

Horizontal momentum

$$
\frac{d \vec{v}}{d t}=-R T \frac{\nabla \pi}{\pi}-\nabla \phi-R T \nabla \widehat{q}-\frac{1}{m} \frac{\partial(p-\pi)}{\partial \eta} \nabla \phi
$$

Surface pressure

$$
\frac{d q_{s}}{d t}=-\frac{1}{\pi_{s}} \int_{0}^{1} \nabla \cdot(m \vec{v}) d \eta
$$

Vertical momentum

$$
\frac{d w}{d t}=\frac{g}{m} \frac{\partial(p-\pi)}{\partial \eta}
$$

Diagnostic relations

$$
\begin{aligned}
\frac{d \pi}{d t} & =\vec{v} \cdot \nabla \pi-\int_{0}^{\eta} \nabla \cdot(m \vec{v}) d \eta^{\prime} \\
\phi & =\phi_{s}-\int_{\eta}^{1} \frac{m R T}{p} d \eta^{\prime} \\
d & =-\frac{p}{m R T}\left(\nabla \phi \frac{\partial \vec{v}}{\partial \eta}-g \frac{\partial w}{\partial \eta}\right)
\end{aligned}
$$

Pressure departure

$$
\frac{d \widehat{q}}{d t}=\frac{1}{\kappa-1}(D+d)-\frac{1}{\pi} \frac{d \pi}{d t}
$$

$$
\begin{aligned}
D & =\nabla \cdot \vec{v} \\
\kappa & =\frac{c_{p}}{R} \\
m & =\frac{\partial \pi}{\partial \eta}
\end{aligned}
$$

Basic state

nwp central europe
Current state:
\square stationary
\square resting
\square hydrostatically balanced (π_{s}^{*})
\square dry
\square isothermal (T^{*})
\square with constant orography ($\nabla \phi^{*}=0$)
\square

Basic state

nwp central europe

New:

\square stationary
\square resting
\square hydrostatically balanced (π_{s}^{*})
\square dry
\square isothermal (T^{*})
\square with constant orographic slope (in absolute value, $\left|\nabla \phi^{*}\right| \neq 0$)

HungaroMet

Q $\overbrace{0}$

Linear model

Temperature

$$
\frac{\partial T}{\partial t}=\frac{\kappa T^{*}}{\kappa-1}(D+d)
$$

Horizontal momentum

$$
\frac{\partial \vec{v}}{\partial t}=-R T^{*} \frac{\nabla \pi}{\pi^{*}}-\nabla \phi-R T^{*} \nabla \hat{q}-\frac{1}{m^{*}} \frac{\partial \pi^{*} \widehat{q}}{\partial \eta} \nabla \phi^{*}
$$

Vertical momentum

$$
\frac{\partial w}{\partial t}=\frac{g}{m^{*}} \frac{\partial \pi^{*} \widehat{q}}{\partial \eta}
$$

Pressure departure

$$
\frac{\partial \widehat{q}}{\partial t}=\frac{1}{\kappa-1}(D+d)+\frac{1}{\pi^{*}} \int_{0}^{\eta} m^{*} D d \eta^{\prime}
$$

Surface pressure

$$
\frac{\partial q_{s}}{\partial t}=-\frac{1}{\pi_{s}^{*}} \int_{0}^{1} m^{*} D d \eta
$$

Diagnostic relations

$$
\begin{aligned}
\nabla \phi & =\nabla \phi_{s}-\int_{\eta}^{1} \nabla\left(\frac{m R T}{p}\right) d \eta^{\prime} \\
\nabla \phi^{*} & =g \wedge^{*} S^{*}(\eta) \\
d & =-\frac{p}{m R T}\left(\nabla \phi \frac{\partial \vec{v}}{\partial \eta}-g \frac{\partial w}{\partial \eta}\right)
\end{aligned}
$$

Definitions

$$
\begin{aligned}
\wedge^{*} & =\frac{1}{g}\left\|\nabla \phi_{s}\right\|^{*} \\
S^{*}(\eta) & =\frac{B(\eta) \pi_{s}^{*}}{\pi^{*}(\eta)} \\
m^{*} & =\frac{\partial \pi^{*}}{\partial \eta}
\end{aligned}
$$

Modified vertical divergence

$$
d=\frac{p}{m R T}\left(\nabla \phi \frac{\partial \vec{v}}{\partial \eta}-g \frac{\partial w}{\partial \eta}\right)
$$

Time evolution in linear model

$$
\begin{aligned}
\frac{\partial \vec{v}}{\partial t} & =\mathbb{A}-\Lambda^{*} S^{*}(\eta) \mathbb{B} \\
\frac{\partial w}{\partial t} & =\mathbb{B} \\
\frac{\partial d}{\partial t} & =\frac{1}{R T^{*}}\left[\nabla \phi^{*} \partial^{*}\left(\frac{\partial \vec{v}}{\partial t}\right)-g \partial^{*}\left(\frac{\partial w}{\partial t}\right)\right] \\
& =\frac{1}{R T^{*}}\left[g \wedge^{*} S^{*}(\eta) \partial^{*} \mathbb{A}-g \wedge^{* 2} S^{*}(\eta)\left(S^{*} \partial^{*} \mathbb{B}+\mathbb{B} \partial^{*} S^{*}\right)-g \partial^{*} \mathbb{B}\right]
\end{aligned}
$$

where

$$
\partial^{*} X=\frac{\pi^{*}}{m^{*}} \frac{\partial X}{\partial \eta}
$$

Linearized slope in SI

We omit the first order terms in Λ^{*} and then $\frac{\partial \vec{v}}{\partial t}$ is unchanged and all operators of the RHS of $\frac{\partial d}{\partial t}$ apply on \widehat{q}.

Time evolution in linear model

$$
\begin{aligned}
& \frac{\partial \vec{v}}{\partial t}=\mathbb{A}-\Lambda^{*} S^{*}(\eta) \mathbb{B} \\
& \frac{\partial d}{\partial t}=\frac{1}{R T^{*}}\left[\underline{g \Lambda^{*} S^{*}(\eta) \partial^{*} \mathbb{A}}-g \Lambda^{* 2} S^{*}(\eta)\left(S^{*} \partial^{*} \mathbb{B}+\mathbb{B} \partial^{*} S^{*}\right)-g \partial^{*} \mathbb{B}\right]
\end{aligned}
$$

Finally, since $\mathbb{B}=g\left(\partial^{*}+1\right) \hat{q}$

Time evolution in linear model

$$
\begin{aligned}
\frac{\partial \vec{v}}{\partial t}=\mathbb{A} \rightsquigarrow \frac{\partial D}{\partial t} & =\frac{\partial(\nabla \cdot \vec{v})}{\partial t}=\nabla \cdot \mathbb{A} \\
\frac{\partial d}{\partial t} & =\mathcal{L}_{\text {new }}^{*} \widehat{q}
\end{aligned}
$$ Hydrome

Institute

Linearized slope in SI

nwp central europe
We can define
New vertical Laplacian operator

$$
\begin{aligned}
\mathcal{L}_{\text {new }}^{*} & =\alpha \partial^{*}\left(\partial^{*}+1\right)+\beta\left(\partial^{*}+1\right) \\
\alpha & =1+\wedge^{* 2} S^{* 2}(\eta) \\
\beta & =\wedge^{* 2} S^{*}(\eta) \partial^{*} S^{*}(\eta) \\
\wedge^{*}=0: \mathcal{L}_{\text {new }}^{*} \rightarrow \mathcal{L}_{v}^{*} & =\partial^{*}\left(\partial^{*}+1\right) \\
S^{*}(\eta)=0: \mathcal{L}_{\text {new }}^{*} \rightarrow \mathcal{L}_{v}^{*} &
\end{aligned}
$$

How to discretize the proposed solution?

New discretized vertical Laplacian operator

$$
\begin{aligned}
{\left[\partial^{*}\left(\partial^{*}+1\right) X\right]_{l} } & =\ldots \\
{\left[\left(\partial^{*}+1\right) X\right]_{l} } & =\ldots \\
S^{*}\left(\eta_{l}\right) & =\ldots \\
\partial^{*} S^{*}\left(\eta_{l}\right) & =\ldots
\end{aligned}
$$

How to set boundary conditions?

Does $\mathcal{L}_{\text {new }}^{*}$ have only real and negative eigenvalues?
For an example of 87 vertical levels used in Czech operations we are safe.

Then we can eliminate the discretized equations up to horizontal divergence D and solve the Helmholtz equation for D.

Idealized tests

Vertical velocity for the Schär mountain case depending on \wedge^{*}. ($\Delta x=500 m, \Delta z=250 m$, mountain height $h=250 \mathrm{~m}, T_{0}=288 \mathrm{~K}, u_{0}=10 \mathrm{~m} / \mathrm{s}, \Delta t=32 \mathrm{~s}$)

Real simulations @200m

※ LACE

The basic algorithmic choices for ALARO configurations @200m are:
Dynamical core
\square semi-Lagrangian advection scheme with 4 iterations for trajectory calculation
\square PC time scheme with one iteration, cheap variant (SL trajectories are not recalculated in corrector)
\square modified vertical divergence d4 for vertical motion, transformation to vertical velocity w in the non-linear model
\square reference values of the linear model: SITR=300K, SITRA=100K, SIPR=900hPa
\square no decentering
\square semi-Lagrangian horizontal diffusion applied on all model variables + TKE,TTE, hydrometeors
\square linear truncation for all spectral fields except orography; quadratic truncation of orography

ALARO physics

\square radiation scheme ACRANEB2
\square turbulence and shalow convection scheme TOUCANS, model 2
\square scale aware deep convection and microphysics scheme 3MT
Initialization
\square initialization with 3DVAR + surface DA (canari) for 2.325 km run; dynamical adaptation + DFI for 500m and 200m runs

Particular choices for ALARO@200m:
\square cubic truncation of orography
\square SITRA $=50 \mathrm{~K}$
\square no 3MT (deep convection), only STRAPRO (stratiform precipitation)

Vertical velocity for the alpine case 19 August 2022 OUTC +24 hours.

Real simulations

Vertical velocity depending on \wedge^{*} for the alpine case 19 August 2022 OUTC +24 hours.

$$
\wedge^{*}=0
$$

With additional iterations of the SI scheme, the integration crashes.

Real simulations

Vertical velocity depending on \wedge^{*} for the alpine case 19 August 2022 OUTC +24 hours.

$$
\wedge^{*}=0
$$

Real simulations

Averaged spectral norms of vertical divergence for the alpine case 19 August 2022 OUTC + 24hours.

Conclusions
\square We must continue our efforts.
\square We plan to test various possible definitions of vertical function $S^{*}(\eta)$.
\square We plan to test various possible discretizations including boundary conditions.
\square We plan to make further idealised tests and real simulations.
\square If the time scheme allows a source of a noise, further time iterations may not help to stabilize the scheme. To the contrary, the scheme with further iterations may show even less stability.

Vertical motion variable

Fabrice Voitus proposed a modification of the vertical velocity defined in the model to simplify the bottom boundary condition and allow more precise calculation.
https://events.ecmwf.int/event/167/contributions/1379/attachments/794/1401/AS2020-Voitus.pdf

Current state

$$
\begin{aligned}
w & =\frac{d z}{d t} \\
d & =-g \frac{p}{m R T} \frac{\partial w}{\partial \eta}+X \\
X & =\frac{p}{m R T} \frac{\partial \mathbf{V}}{\partial \eta} \nabla \phi \\
\frac{\partial d}{\partial t} & =-\frac{g^{2}}{R T^{*}} \mathcal{L}_{v}^{*} \widehat{q} \\
\mathcal{L}_{v}^{*} & =\partial^{*}\left(\partial^{*}+1\right)
\end{aligned}
$$

Fabrice's definition

$$
\begin{aligned}
W & =w-\mathbf{V} \cdot S(\eta) \frac{1}{g} \nabla \phi_{s} \\
d & =-g \frac{p}{m R T} \frac{\partial W}{\partial \eta}+X \\
X & =\frac{p}{m R T} \frac{\partial \mathbf{V}}{\partial \eta} \nabla\left(\phi-S(\eta) \phi_{s}\right)-\frac{p}{m R T} \mathbf{V} \frac{\partial \nabla \phi}{\partial \eta} \\
\frac{\partial d}{\partial t} & =-\frac{g^{2}}{R T^{*}} \mathcal{L}_{\text {mod }}^{*} \widehat{q} \\
\mathcal{L}_{\text {mod }}^{*} & =\partial^{*}\left(\partial^{*}+1+\wedge^{* 2} S(\eta) \gamma^{*}\right)
\end{aligned}
$$

Then discretization of these terms involves interpolations between half levels (where w is represented) and full levels (where V is represented) and is cumbersome ... Hydromet
Institute

HungaroMet

Current state

in the non-linear model

$$
\begin{aligned}
w_{s} & =\mathbf{V}_{s} \frac{1}{g} \nabla \phi_{s} \\
\frac{d w_{s}}{d t} & =\frac{d\left(\mathbf{V}_{s} \frac{1}{g} \nabla \phi_{s}\right)}{d t}
\end{aligned}
$$

while in the linear model explicit guess of d is calculated consistently and used in the implicit part

Complicated and not exact! It is a source of noise which may grow.

Fabrice's definition

in the linear and non-linear model

$$
\begin{aligned}
W_{s} & =0 \\
\frac{d W_{s}}{d t} & =0
\end{aligned}
$$

Easily applicable!

Real simulations

nwp central europe

Vertical velocity for the alpine case 19 August 2022 OUTC +24 hours.

Real simulations

Averaged spectral norms of vertical divergence for the alpine case of 19 August 2022central europe OUTC + 24hours.

Vertical motion variable

Conclusions and advertisements

\square The modification is available in cycle CY49t1 under namelist option NVDVAR $=5$, thanks to Fabrice Voitus and Karim Yessad.
\square The new formulations may help to further reduce the non-linear residual of the ICI time scheme and to get rid of the noise coming from steep orography, especially in high resolutions.

