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New vertical motion variables in the non-hydrostatic
dynamical core of the ALADIN system

Jozef Vivoda, SHMI, RC LACE stay in Prague, 06/2018

Abstract—Motivated by the work of Fabrice Voitus (see his
presentation from the ALADIN Workshop in Toulouse 2018),
we have implemented vertical prognostic variables d5 and gW .
The time stepping of gW quantity includes Y-term. The time
stepping implementation of the Y-term is equivalent to the X-
term implementation (Smolikova report). To better understand
the stability properties of the Y-term treatment we performed
a stability analysis based on Gospodinov and Smolikova. The
scheme reported here was developed and tested exclusively for
the following switches LGWADV=.T., ND4SYS=2, NXLAG=3,
LTWOTL=.T. and LSLAG=.T..

I. NEW PROGNOSTIC QUANTITIES

Fabrice showed that the robustness of existing constant
coefficient SI SL scheme can be improved. The key is different
redistribution of D3 in between prognostic quantities. Actually
we are using division

D3 = D − p

mRT

∂gw

∂η
+

p

mRT

∂~v

∂η
~∇φ, (1)

with prognostic quantity that satisfies D3 = D+d4. This gives

d4 = − p

mRT

∂gw

∂η
+X4 (2)

X4 =
p

mRT

∂~v

∂η
~∇φ (3)

where

gw =
dφ

dt
, (4)

with the free slip surface boundary condition

gws = ~vs~∇φs. (5)

The new division is based on the idea that the new vertical
”velocity” quantity written with capital W will have zero value
at the surface

gWs = 0. (6)

We use two different divisions

1) LVD5W (W5, d5, X5, Y 5)

gW5 = gw − ~v~∇φ = gw + Y 5. (7)

The Y-term is defined in (7). The new division of D3

with gW5 used is

D3 = D − p

mRT

∂gW5

∂η
− p

mRT
~v~∇∂φ

∂η
. (8)

We define new prognostic quantities

d5 = − p

mRT

∂gW5

∂η
+X5 (9)

X5 = − p

mRT
~v~∇∂φ

∂η
(10)

2) LVD6W (W6, d6, X6, Y 6)

gW6 = gw − ~v~∇φs = gw + Y 6. (11)

The new division of D3 is

D3 = D − p

mRT

∂gW6

∂η
+X4− p

mRT

∂~v~∇φs
∂η

. (12)

We define new prognostic quantities

d6 = − p

mRT

∂gW6

∂η
+X6 (13)

X6 = X4− p

mRT

∂~v~∇φs
∂η

. (14)

The evolution of quantities is equivalent to actual imple-
mentation of (d4, X4, gw). We compute evolution of gw resp.
gW and we transform explicit guess of prognostic quantities
into d variable. We than add SI linear correction evaluated
for d. The spectral computations are performed with d being
prognostic. This trick requires special treatment of the X-term
and the Y-term. We use W,d,X, Y without specifying which
of the two divisions is used if there is no danger of confusion.
Always W,d,X, Y used in one equation correspond to each
other.

From the equation

D − p

mRT

∂gw + Y

∂η
+X = D − p

mRT

∂gw

∂η
+X4 (15)

follows that we can compute the Y -term using the following
relations

p

mRT

∂Y

∂η
= X −X4,

∂φ

∂η
= −mRT

p
(16)

as
∂Y

∂φ
= X4−X. (17)
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II. EVOLUTION OF gW AND d VARIABLES

Here we introduce special treatment of the Y -term. We
assume that Y can be divided into two parts Y = Ye + Ysl.
We know exactly the nonlinear model of Ye time evolution.
The Ysl model is unknown (or too complex) and therefore
we solve its evolution by SL numerical approximation of dYsl

dt
term. The evolution of gW yields

dgW

dt
= N +

dYsl
dt

(18)

and nonlinear model N contains terms related to evolution of
gw and Ye. The division of Y is as follows

variable Y Ye Ysl

Y 5 −~v~∇φ 0 −~v~∇φ

Y 6 −~v~∇φs − (~v − ~vs) ~∇φs −~vs~∇φs

and the time evolution yields

variable dYe

dt
dYsl

dt

Y 5 0 −d(~v~∇φ)dt

Y 6 −d(~v− ~vs)dt
~∇φs −d( ~vs ~∇φs)

dt

Remark: The simplest choice Ysl = 0 for Y 6 leads to the
development of the so called ”chimney” over the orographic
obstacle as described in (Brozkova, Smolikova). We solve
this problem by adding the time evolution of ~vs~∇φs into
the nonlinear model N . We have to compensate the time
evolution of ~vs~∇φs included in the nonlinear model N
through the SL-treatment of −~vs~∇φs.

Variable gW is a half-level quantity (as gw) and therefore
also the Y-term is a half level quantity. The explicit guess of
gW is computed using 2TL SI SL scheme as

gW+
F − gW 0

O

dt
= Nm

M +
Y +
slF − Y 0

slO

dt
. (19)

In order to write the time scheme with the SL advection we
introduce the following notation

symbol value meaning

O x− dx the origin (departure) point of the
trajectory

F x the final (arrival) point of the tra-
jectory

M x− dx
2 the middle point of the trajectory

+ t+ dt

0 t

m t− dt
2

− t− dt

The terms Y +
slF and Nm

M are extrapolated using values
at time levels t and t − dt and spatial locations F and O
with second order method in time. This gives one parametric
relations

Y +
slF = (

3

2
− α)Y 0

slF + (α− 1

2
)Y −slF (20)

+(α+
1

2
)Y 0
slO + (−α− 1

2
)Y −slO +O(dt2).

and

Nm
M = (

3

4
− β)N0

F + (β − 1

4
)N−F (21)

+(β +
3

4
)N0

O + (−β − 1

4
)N−O +O(dt2).

(22)

A stability analysis of 19 depending on parameters α and
β is given in section VII.

The choice α = 1/2 leads to the time stepping treatment
of Ye equivalent to the time treatment of the X-term under
ND4SY S = 2. This gives

gW+
F − gW 0

O

dt
= Nm

M +
Y 0
slF − Y

−
slO

dt
. (23)

When SETTLS (β = 1
4 ) is used the time stepping is second

order accurate.
The treatment of Ysl requires an addition of the new terms

at the level of LATTEX DNT. Division between SL buffers
is as follows (τ = dt

2 )

PredictorNESC

gW+
F =

[
gW 0 + τN0 − Y −sl

]
O

+
[
τN0 + Y 0

sl

]
F

(24)
PredictorSETTLS

gW+
F =

[
gW 0 + 2τN0 − τN− − Y −sl

]
O

+
[
τN0 + Y 0

sl

]
F

(25)
Corrector

gW
+(n)
F =

[
gW 0 + τN0 − Y 0

sl

]
O

+
[
τN+(n−1) + Y

+(n−1)
sl

]
F

(26)

The results are shown in Figure 1. The ”chimney” effect is
apparent in (c). The SL approximative treatment of BBC is
shown in (d). One can see that the problem has disappeared.

III. LINEAR MODEL FOR d5 AND d6

In the continuous context

d4 = d5 = d6 (27)

and therefore the prognostic equation for d5 and d6 must be
the same as for d4. The vertical divergence d is a prognostic
variable in the linear computations treated in the SI manner.
Hence the linear model remains unchanged for all d/w choices
while the shape of the nonlinear model formulated with
vertical velocity w variable (LGWADV=TRUE) depends on
the w variable choice.
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(a) reference
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(b) LVD5W
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(c) LVD6W, Ysl = 0
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(d) LVD6W, Ysl = ~vs ~∇φs

Figure 1: The potential flow test for new d and W variables.

IV. VERTICAL DISCRETISATION

To simplify the notation we introduce the depth of the model
layer

dφl =

(
π

p

)
l

(RT )l

(
dπ

π

)
l

. (28)

The X4-term is discretized on the model full levels (GPXX
routine) as

X4l =

(
~vl̃ − ~vl

)
~∇φl̃ +

(
~vl − ~vl̃−1

)
~∇φl̃−1

dφl
. (29)

The X5-term is discretized in an analogous way as

X5l = −

(
~∇φl̃ − ~∇φl

)
~vl̃ +

(
~∇φl − ~∇φl̃−1

)
~vl̃−1

dφl
. (30)

The X6-term is discretized as

X6l = X4l −
(
~vl̃ − ~vl̃−1

)
dφl

~∇φs. (31)

V. CONVERSION FROM MODEL TO FILE AND VICE VERSA

There is a full level quantity −gdw stored in FA files.
This quantity is being converted into the vertical diver-
gence d (this and backward conversion is calculated in
GNH CONV NHVAR). The full level quantity dY is used
in this conversion. It is computed from the relevant X-terms
using (17) as

dYl = (X4l −Xl) dφl. (32)

The half level quantity Y itself is computed by vertical inte-
gration of dY using an appropriate bottom boundary condition

Ys = YL̃ = −~vL~∇φL̃ (33)

and
Yl̃−1 = Yl̃ − dYl. (34)

VI. IDEALIZED AND REAL EXPERIMENTS

We tested all three schemes (SI LSETTLS, SI NESC, PC
NESC CHEAP) with the potential flow test. We found big
sensitivity of the time stepping stability to the time treatment
of Ysl. The SI SETTLS scheme is the most stable one. The
SI NESC scheme stability is achieved only when ∂Ysl

∂η = 0
at the model top level. If this is not fulfilled the scheme

requires a sponge application in order to be stable. The PC
scheme with NESC predictor is unstable. This problem was not
investigated in details, it was left for further work. A general
conclusion from idealized experiments is that the best choice
is SI SETTLS scheme with the sponge activated.

It is also important fact that stability of the full 3D model
is not consistent with the results of the stability analysis
presented in section VII where α = 1

2 is not favorable.
Experiments show stability exclusively for α = 1

2 . Any other
value leads to unstable SI scheme, despite the fact that the
stability analysis results are more optimistic.

VII. STABILITY ANALYSIS OF THE SL SCHEME

We extend the analysis of stability from Gospodinov and
Vivoda. We assume that prognostic quantity f(x, t) can be
linearly divided using a parameter δ as f = δf+(1−δ)f and
the time evolution of f is described by

df

dt
= δ (λ+ iω) f + (1− δ)df

dt
. (35)

The right hand side of a prognostic equation is thus split in
an analytically expressed part and a part which evolution is
treated approximatively in SL-manner due to its very nonlinear
nature. This is a prototype of equations for d4, resp. d5,
and gW in the NH kernel of the ALADIN system. The part
(1− δ)dfdt represents the time evolution of the X-term, Y-term
respectively. The 2TL time discretization gives

f+F − f
0
O = δ (dtλ+ idtω) fmM + (1− δ)

(
f̃+F − f

0
O

)
(36)

The terms fmM = f(−dx2 ,
dt
2 ) and f̃+F = f(0, dt) are

extrapolated using values at time levels 0 and − and spatial
locations F and O with second order method in time. This
gives

fmM = (
3

4
− β)f0F + (β − 1

4
)f−F (37)

+(β +
3

4
)f0O + (−β − 1

4
)f−O +O(dt2).

f̃+F = (
3

2
− α)f0F + (α− 1

2
)f−F (38)

+(α+
1

2
)f0O + (−α− 1

2
)f−O +O(dt2)..
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Figure 2: Stability of SL time stepping for various values of
α.

The scheme is second order accurate in time for any choice
of parameters α and β. However, its stability depends on the
choice of these parameters. We investigate solely the value
β = 1

4 that represents the SETTLS scheme. The ND4SY S =
2 solution of the X-term treatment is represented by the choice
α = 1

2 .

The stability results for the SETTLS scheme with relatively
big contribution of the explicit term (δ = 3

4 ) are shown in
Figure 2 for a range of values (dtλ, dtω). The stability is
enhanced when compared to the stability of the reference
SETTLS scheme (a).

The stability results for the SETTLS scheme with relatively
smaller contribution of the explicit term (δ = 1

2 ) are shown in
Figure 3. Again the SETTLS reference is shown as (a).

We showed that the stability of the X-term and the Y -
term time stepping can be improved while keeping second
order of accuracy in time. However as we showed the relative
contribution of approximative time evolution term must be
small when compared to the analytic one (1− δ << δ).

As mentioned already above the presented analysis is based
on Hortal resp. Gospodinov, where such an analysis is used
to prove the stability properties of the SETTLS scheme.
However, we found that the results from 3D experiments are
not consistent with the theoretical results of this analysis.
Therefore we are skeptical also about the results obtained
for SL scheme without any approximative SL term. The full
3D model seems to be too complex to be approximated by a
simple 1D single variable equation.
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Figure 3: Stability of SL time stepping for various values of
α.

VIII. IMPLEMENTATION INTO MODEL

The newly proposed d5, d6 and W5,W6 were implemented
into the CY46 of the ALADIN system under the key LVD5W,
LVD6W respectively, exclusively under the following choices

key value meaning

ND4SYS 2 treatment of X variable (can be
improved !)

LGWADV T using vertical velocity as prognos-
tic quantity for SL advection and
nonlinear evolution

LTWOTL T only 2TL scheme considered

LSLAG T only semi-Lagrangian scheme con-
sidered

NXLAG 3 Y term evolution coded only for
this choice

NVDVAR 4 new variables are implemented as
small deviation from this choice

The following new keys were introduced in the new module
YOMDEV and are supposed to be moved to YOMDYN:



SHMU/LACE 5

key value meaning default

LVD5W T NEW key used to activate d5 and gW5 computa-
tions

F

LVD6W T NEW key used to activate d6 and gW6 computa-
tions

F

LVDWY T use the SL approximation of ∂Y
∂t evolution F

set if LVD5W=T

F use the analytical form to evolve Y

with LVD6W=T only

LPGFH T use the PGF half level quantity in Y calculations F

F use half level horizontal wind tendency in Y
calculations

with LVD6W=T only

NX5FORM integer the way X5 is discretized (in GPXX) 2

RWY real α = a weight to control Y time discretisation 1
2

RWY = 1/2 ≈ ND4SYS = 2


