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Vertical finite element scheme in dynamical core of
ALADIN

Jozef Vivoda, SHMI, RC LACE stay in Prague, 11/2017

I. INTRODUCTION

The stay has been dedicated mainly to finish paper about
previous work. The first draft of paper has been written
already 2 years ago, but meanwhile the code diverge from
waht was written in the draft. Therefore we decided to revisit
paper, to re-create 2D and 3D test with the newest version of
the code.

We phased latest development into CY45, as a preparation
for the future CY45T1. The version phased was the one at
the end of last stay (June 2017). We also re-phased the same
code into CY43T2BF02 because this version of model has
been available at very moment at servers at CHMI and SHMI
as well.

There was slight inconsistency between my latest locally
developed code and what was phased into CY45 and
CY43T2BF02. Therefore I put my modifications (differences
in 6 routines only) on top of CY43T2BF02. We agreed that
these modifications will enter CY45 in order to ensure their
presence in main trunk in Toulouse.

Here we describe changes phased by me in top of
CY43T2BF02 and we put here also 2D tests prepared for
article.

II. DEFINITION OF FULL LEVEL A AND B AND HALF AND
FULL LEVEL DEPTHS δA AND δB

Vertical discretization in FD scheme is based on implicit
definition of half level hydrostatic pressures

πl̃ = Al̃ +Bl̃πs. (1)

The half-level values Al̃ and Bl̃ are specified a priori and
the values at domain top are A0̃ = B0̃ = 0 and at surface
AL̃ = 0 and BL̃ = 1.

The FE scheme discretization is based on derivate form of
(1)

δπl
δηl

=
δAl
δηl

+
δBl
δηl

πs (2)

and conditions

I10 ·
δAδAδA

δηδηδη
= 0 (3)

I10 ·
δBδBδB

δηδηδη
= 1 (4)

with all quantities being on model full levels. Model full
level l is located inside layer with interfaces ˜l − 1 and l̃.

Comment: There is only one integral operator Iη0 defined
in VFE scheme (RINTBF11). It represents integration from
model top to any level η. The total integral over atmosphere
I10 is obtained when we evaluate Iη0 on model surface (η = 1).

Conditions (3) and (4) express mass conservation

I10 ·
δπδπδπ

δηδηδη
= I10 ·

δAδAδA

δηδηδη
+ πsI

1
0 ·
δBδBδB

δηδηδη
= πs, (5)

and they are used to define full level differences δAl and
δBl.

The depth of the layer δηlis defined as

δηl = ηl̃ − η ˜l−1. (6)

with half-level η defined as

ηl̃ =
Al̃
p0

+Bl̃ (7)

with constant reference pressure p0 = 101325Pa. Full level
values of η required during construction of FE operators are

ηl =
1

2

(
η ˜l−1 + ηl̃

)
. (8)

The half-levels values Al̃ and Bl̃ are known a priori. The first
guess of differences is computed from them as

δ̂Al = Al̃ −A ˜l−1 (9)
ˆδBl = Bl̃ −B ˜l−1. (10)

In order to fullfill (4), the first guess obtained by (10) is
integrated

I10 ·
ˆδB̂δB̂δB

δηδηδη
= α, (11)

and finally δBl is determined

δBl =
ˆδBl
α
, (12)

and (4) is fullfilled exactly.

The ECMWF VFE implementation is based on geometrical
properties of δA

δη curve. When you see Figure 1), it is apparent
that condition (3) is fullfiled when the area above the point
where δA

δη = 0 is rescaled to be equal to area below that
point. In [1], the red area is iteratively rescaled to be equal to
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Figure 1: Typical shape of δAδAδA
δηδηδη . The condition I10 · δAδAδAδηδηδη = 0

represents condition that the red and blue area must be equal
in their size.

blue one. We tested also another approaches (rescaling blue
area resp. rescaling both by preserving total area), but it has
no influence on result.

We use non iterative approach. We transform condition (3)
into form

I10 ·
(

1

p0

δAδAδA

δηδηδη
+ 1

)
= 1 (13)

taking into account property I101 = 1.

The differences δAl are then computed from relation

1

p0

δAl
δηl

+ 1 =
1

β

(
1

p0

δ̂Al
δηl

+ 1

)
(14)

with constant β computed from guess

β = I10 ·

(
1

p0

δ̂ÂδÂδA

δηδηδη
+ 1

)
. (15)

Condition (3) is then fullfilled exactly.

Comment: We could define condition for δAl as

I10 ·
(

1

p0

δAδAδA

δηδηδη
+ ggg

)
= 1 (16)

with any auxiliary discrete function ggg that satisfy condition
I10ggg = 1. Natural choice could be ggg = δBδBδB

δηδηδη . This was tested
and there was no visible difference in results in Straka test
when compared to choice ggg = 1.

Once we have correct values of full level depths we can
compute full level values Al and Bl as

Iη0 ·
δAδAδA

δηδηδη
= A (17)

Iη0 ·
δBδBδB

δηδηδη
= B. (18)

It allows us to compute full level hydrostatic pressure
πl = Al +Blπs.

When using prognostic gw on half levels we need also the
half-level δ̃ÃδÃδA

δηδηδη and ˜δB̃δB̃δB
δηδηδη to evaluate mhmhmh in vertical momentum

prognostic equation

dwww

dt
=

g

mhmhmh
·Dh · (ppp− πππ) . (19)

For details see [2]. This values are computed from spline fit of
full level values used implicitly inside Iη0 operator. We design
interpolation operator omitting mass and stiffness matrices as

T = Ah ·A−1, (20)

with {A}kl = ak(ηl) and {Ah}kl̃ = ak(ηl̃) being projections
from full-level into FE space and from FE space back to
half-levels otherwise.

The set of basis functions ak(η) and boundary conditions
are the same as used for Iη0. The half level differences of A
and B yields

δ̃A

δη

δ̃A

δη

δ̃A

δη
= T

δA

δη

δA

δη

δA

δη
(21)

˜δB

δη

˜δB

δη

˜δB

δη
= T

δB

δη

δB

δη

δB

δη
. (22)

We tested this formulation in equation (19) with no visible
influence on results. The name of transformation matrix T is
RTRAFH. Routine SUVERTFEB has been modified to allow
preparation of intepolation operators and modifications are
done under key LVDA.

III. SET OF OPERATORS WITH EXPLICIT INPUT BOUNDARY
CONDITIONS fs = fL AND ∂f

∂η s
= 0

We have introduced the two boundary conditions at each
material boundary (either model top or model bottom) into
integral operator Iη0. We measure the quality of operator in
term of smoothness of quantity m = ∂π

∂η . This is important
aspect to avoid numerical errors as this quantity appears in
every term with any vertical operator. Taking into account that
m = ∂A

∂η + ∂B
∂η πs and conditions (3) and (4), the smoothness

of m is determined by the properties of Iη0 operator.

We studied the smoothness of spline approximation of m
for A and B defined in analytical form

ω(η) = η2(3− 2η) (23)
A(η) = π0η(1− ω(η)) (24)
B(η) = ηω(η), (25)

with

m(η) = π0
(
8η3 − 9η2 + 1

)
+ πs(9− 8η)η2. (26)

When reference pressure π0 is equal to surface pressure πs the
coordinate becomes pure σ coordinate with m = πs = const..
We use πs = 90000Pa and π0 = 101325Pa.

We sampled A and B on L + 1 half levels with regular
distribution (ηl̃ =

l
L+1 ). Then we fit discrete values of δA

δη and
δB
δη with spline with some set of explicit boundary conditions.
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(a) f0 = f1, fL+1 = fL
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(b) (a) and ∂f
∂η 0

= ∂f
∂η L+1

= 0
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(c) (a) and ∂2f
∂η2 0

= ∂2f
∂η2 L+1

= 0
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(d) (a) and ∂3f
∂η3 0

= ∂3f
∂η3 L+1

= 0

Figure 2: Accuracy of spline fit of m with various boundary
conditions.

If spline fit of function f is written as

S(f) =

L+1∑
i=0

f̂ie(η)i. (27)

then we compute spline fit of m as

S(m) = S(
δA

δη
) + S(

δB

δη
)πs. (28)

This allows us to compute error of spline fit defined as
err(η) = |m(η) − S(m)|, with m(η) from (26). err(η) for
various boundary conditions is shown on Figure 2.

When we compute global error as integral of err(η) over
whole domain, we found that minimum absolute error is
associated with boundary condition ∂f

∂η 0
= ∂f

∂η L+1
= 0

combined with f0 = f1, fL+1 = fL.

This boundary conditions are used in set of operators
RINTBF11, RDERBF11, RDDERBF11.
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