
Application of ENO technique to semi-Lagrangian
interpolations

RC LACE stay report
Scientific supervisors: Petra Smoĺıková and Ján Mašek

Alexandra Crăciun
NMA, Romania

CHMI, Prague

18.05-12.06.2015

1 Introduction

The purpose of this study was to continue the work started last year, which
was to explore some alternative interpolators that are less overshooting than
commonly used cubic Lagrange polynomial, but still accurate enough. One of
these could be the ENO technique.

The evaluation of ENO interpolation in some 2D experiments (after some
preliminary tests made by Ján Mašek) showed that the second order ENO
interpolation (with quadratic Lagrange polynomials) produces a very smooth
solution such that it could not be taken into consideration as a replacement
for the interpolators used currently in the model. In that case, another idea
was to analyze the behaviour of this scheme with increased order (using cubic
Lagrange polynomials).

Even if third order ENO technique was not yet implemented in 2D model,
results obtained with 1D linear advection equation proved to be encouraging.
The task was to evaluate if this remains true when this interpolation scheme
is implemented in the full model.

2 Implementation in the cycle 40t1

The third order ENO scheme refers at the possibility to choose between
three stencils based on the smoothness of the solution. For a third order
interpolation scheme, a 4 points stencil is needed to construct a 1D cubic
interpolator.

x2 x3 x4 x5

x1 x2 x3 x4

x0 x1 x2 x3

xO

1

Having six nodes and the interpolation point in the central interval, we
can choose either the left, the central or the right 4 points stencil to get the
interpolated value. The choice between the stencils is made after finding the
smaller absolute value of the finite difference approximation for third derivate
of the function for each of the three stencils.

1

x0 x1 x2 x3 x4 x5

y0

y1

y2

y3

y4

y5

xO

b

b

b

b

b

b

ξ

1

For example: if y is the function to be interpolated, yi = y(xi) and |y4−3y3 +
3y2−y1| < |y3−3y2 +3y1−y0| and |y4−3y3 +3y2−y1| < |y5−3y4 +3y3−y2|
(which means the interpolation point is situated in the central stencil), we will
use the cubic interpolator on stencil 1 − 2 − 3 − 4 and the interpolator will
have the form:

y(xO) =
∑
i=1,4

yi

∏
j=1,4
j 6=i

xO − xj

xi − xj

The variable NSTENCILWIDE (which is not fully implemented in the

code) could be used to specify the number of points needed for interpolation
(NSTENCILWIDE=2 → 4 points stencil, NSTENCILWIDE=3 → 6 points
stencil). LENO is the name of the general switch for the ENO interpolation
scheme, which was put in the new module YOMENO and declared in the
namelist namdyn.h. Then in the setup (sudyn) NSLDIMK is set to 3 for
LENO=T. (Moreover, variables LENO and L3DTURB should not be set true
simultaneously, as well for LENO=T and NSPLTHOI=1, since these cases will
not be coded at the moment.)

According to NSTENCILWIDE, in routine ELASCAW the array dimen-
sions must be set considering KDIMK (=NSLDIMK), which gives the stencil
(1,2,3). For vertical, PVINTW array (weights for vertical interpolation) must
be enlarged about one index identifying the stencil used.

In the current code there is only 4 points stencil available. The first step
in order to apply the third order scheme is to increase the number of points
in the stencil. The declaration of SL-pointer IL0 was modified to IL0(;,:,0:5)
in GP MODEL.

Assuming regular mesh size ∆x (for horizontal), ξ =
xO − x2

∆x
and denoting

w1
i (ξ), i = 1, 4 the weights corresponding to the central stencil, we get:

w1
1(ξ) = (−1/6)ξ(ξ − 1)(ξ − 2), w1

2(ξ) = (1/2)(ξ + 1)(ξ − 1)(ξ − 2)

w1
3(ξ) = (−1/2)(ξ + 1)ξ(ξ − 2), w1

4(ξ) = (1/6)(ξ + 1)ξ(ξ − 1),

2

so that:

y(xO) = y1(−1/6)ξ(ξ − 1)(ξ − 2) + y2(1/2)(ξ + 1)(ξ − 1)(ξ − 2)

+y3(−1/2)(ξ + 1)ξ(ξ − 2) + y4(1/6)(ξ + 1)ξ(ξ − 1).

Weights have also been calculated for the case when the interpolation point
is not in the central stencil. The weights will have similar form: w0

i (ξ) =
w1

i (ξ+1), w2
i (ξ) = w1

i (ξ−1), i = 1, 4, for the left (w0
i) and the right (w2

i) stencil.
These 3 sets of weights are calculated in ELASCAW through LASCAW CLO.

For horizontal interpolation (longitude and latitude) ξ is either PDLO or
PDLAT, and the weights (PCLO and PCLA) are computed in subroutine
LASCAW CLO (where only three weights are calculated, since all four sum
up to one), which is called from ELASCAW. For third order ENO scheme,
this call must be made in a loop through KDIMK in order to obtain three sets
for three stencils.

For vertical interpolation, vertical cubic interpolation weights are calcu-
lated in LASCAW VINTW which is also called from ELASCAW. For the case
of irregular grid in vertical direction, we use the same interpolation formulae
as for horizontal, but the denominators in the weights formula may not be
replaced with simple ∆x and have to be calculated in subroutine SUVSLETA
in array VCUICO for each of the three stencils. For central stencil, we have:

y(xO) = y1
(xO − x2)(xO − x3)(xO − x4)
(x1 − x2)(x1 − x3)(x1 − x4)

+ y2
(xO − x1)(xO − x3)(xO − x4)
(x2 − x1)(x2 − x3)(x2 − x4)

+y3
(xO − x1)(xO − x2)(xO − x4)
(x3 − x1)(x3 − x2)(x3 − x4)

+ y4
(xO − x1)(xO − x2)(xO − x3)
(x4 − x1)(x4 − x2)(x4 − x3)

Close to the vertical boundaries, two cases are treated differently:

• the interpolation point (blue dot in figure below) is next to the top layer
(KLEV=KSLEV) we consider the weights corresponding to the first two
stencils (w1

i and w2
i , i = 1, 2, 3) to be equal to 0 (in ELASCAW); the final

interpolation (in vertical, in subroutine LAITRI) will be cubic, applied
on the third stencil;

3

KSLEV

KSLEV + 1

PVINTW(:,:,4,3)=1

PVINTW(:,:,4,2)=0
w2

i = 0, i = 1, 2, 3

PVINTW(:,:,4,1)=0
w1

i = 0, i = 1, 2, 3

1

• the interpolation point is next to the second used layer (KLEV=KSLEV+1),
then we assign the value 0 to the weights corresponding to the first sten-
cil (w1

i , i = 1, 2, 3); in that case, we will apply cubic ENO choice on the
second and the third stencil.

KSLEV

KSLEV + 1

PVINTW(:,:,4,3)=1

PVINTW(:,:,4,2)=1

PVINTW(:,:,4,1)=0
w1

i = 0, i = 1, 2, 3

1

As the forth value in the third dimension of array PVINTW, we can
store the mask for stencils which may be used here, i.e. PVINTW(:,:,4,i) = 1
if the stencil i (1, 2 or 3) may be considered and PVINTW(:,:,4,i)=0 if not.
Similar cases for bottom layer are treated analogously.

Summary of weights array dimensioning: KDIMK=3 (structure for KDIMK
kept in ELASCAW, where it was, elsewhere NSLDIMENO is used not to mix
too much with cases when KDIMK > 1), NSLDIMENO=3;
PCLO(:,:,3,2,KDIMK), PCLA(:,:,3,KDIMK), PVINTW(:,:,4,NSLDIMENO),
YRVSLETA%VCUICO(4,NSLDIMENO,0:NFLEVG-1),
YRVSLETA%VCUICOH(4,NSLDIMENO,0:NFLEVG) if needed.

4

The actual interpolations are made in subroutine LAITRI (as well as in
LAIDDI for two dimensional fields). When using third order ENO, we need
6 vertical layers. For the first and the last layer we use linear interpolation.
In each of the four intermediate layers we need to perform 2 linear interpola-
tions on the boundaries and 4 ENO interpolations in the middle layers in the
longitudinal direction, then 1 ENO interpolation in the latitudinal direction.
Finally 1 ENO interpolation is made in the vertical direction. If we consider
one ENO interpolation to be equivalent to three cubic interpolations, then it
gives altogether (4 x 4 + 4 + 1) x 3 = 63 cubic interpolations instead of 7 cubic
interpolations done originally in the code. The number of linear interpolations
is not changed. Hence we see that the limits of the proposed technique are
the computational demands.

L

L

3xC
3xC
3xC
3xC

eno
eno
eno
eno

1

A new subroutine LAIENO was created to calculate the interpolated value
from 6 values of the interpolated field and 3 sets (for each stencil) of the 3
interpolation weights (forth value is not needed since weight sum up to 1)
after the smoothest stencil is chosen. This routine is called from LAITRI and
LAIDDI whenever needed.

3 Conclusion

The implementation in the code is not complete yet. Further steps will
be made for debugging: firstly, to emulate the original code but with enlarged
arrays under NSTENCILWIDE=3. A second part would be to check ENO
separately in all three dimensions. For that purpose we define 2 logical arrays
LENO(0:4) and LCUBIC(0:3). If LCUBIC(i)=TRUE then cubic Lagrange
interpolation is applied (simple or ENO type) in vertical level correspond-
ing to i. If LENO(i)=TRUE then this cubic interpolation uses ENO tech-
nique. LENO(4)=TRUE means eno technique applied in the vertical. Hence
by setting LENO(0:4)=FALSE and LCUBIC(0)=LCUBIC(3)=FALSE, LCU-
BIC(1:2)=TRUE, we get the original code with 32 points interpolation. By
changing logical keys we may check the functionality of the code separately in
vertical and horizontal direction for different stencil levels. After that, specific
tests must be made in order to evaluate the scheme.

5

Acknowledgements: I would like to thank Petra Smoĺıková and Ján Mašek
for their help and support, as well to the whole team of CHMI for their hos-
pitality.

6

