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1 Introduction

The ALADIN model uses a semi-Lagrangian advection scheme. This scheme
employs spatial interpolations and its properties are strongly affected by choice
of different interpolator.
The purpose of this study was to explore some alternative interpolators that
are less overshooting than commonly used cubic Lagrange polynomial but still
accurate enough. Because of the difficulty in increasing the number of points
in the stencil we restricted to types of interpolation that use at most 4 point
stencil available in the current code. Of course, the overshootings of the cubic
Lagrange interpolator can be removed using the quasi-monotonic correction.
On the other hand, if we apply quasi-monotonic treatment globally, we loose
accuracy. In order to avoid this, the solution could be one that applies quasi-
monotonic version only in the vicinity of discontinuities, but not in the smooth
part of the function.
A way to remove the overshootings is the ENO technique. Some preliminary
tests were made by Ján Mašek, implementing this method in a toy system -
1D nonlinear advection scheme. The task was then to evaluate the behaviour
of the ENO interpolation in some 2D experiments. After doing this, the next
step was to try the weighted variant of this technique (WENO) and another
type of weighted combination of linear and cubic interpolators.

2 Experiments

Implementation in the cycle 38t1

For testing this scheme, research version of the code was created, with com-
putation of interpolation weights directly in subroutine LAITRI, restricted to
LAM case with LREGETA=.T. (i.e. assuming regular nodes both in hori-
zontal and in vertical). Two dimensional interpolation subroutine LAIDDI
was adapted accordingly. These subroutines contain also the modifications
required for other interpolation schemes tested during the stay.
There, the variable ξ used in equation (2) is either PDVER (for vertical inter-
polation), PDLAT (in latitude) or PDLO (in longitude). To get all needed ar-
rays, we have changed LAITRE GFL, LAITRE GMV, LARCINA, LARCINB
and LARCIN2 as well.
The necessary switch to enable ENO, was created in the new module YOMENO
and declared in the namelist namdyn.h. The name of the general switch for
this interpolator is LENO; other keys for switching the ENO modification on
for distinct variables are not needed. In a similar way, the logical variable
LWENO allows the use of WENO interpolation, if LENO is also set true.
(see subsection 2.2). As to apply the mixture between cubic and linear in-
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terpolation (see subsection 2.3) it is enough to switch the LVAR key in the
namelist NAMDYN and set a value for the parameter RALPHA. All mod-
ifications are available in Prague on yaga machine under the TUC branch
Arp mma130 CY38t1 eno.

2.1 ENO scheme

For a second order interpolation scheme, a 3 point stencil is used to construct
a 1D quadratic interpolator. Having four nodes and the interpolation point in
the central interval, we can choose either the left or the right 3 point stencil
to get the interpolated value. If this choice is made based on the smoothness
of the solution we speak about the ENO technique. In particular the choice
between the stencils is made by computing the finite difference aproximation
for second derivate for each of the two stencils and using the one with smaller
absolute value of that quantity.
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Here, xi are grid point coordinates with corresponding function values yi.
For example: if |y2 − 2y1 + y0| < |y3 − 2y2 + y1| (see the figure below),
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we will use the quadratic interpolator on stencil 0−1−2 and the interpolating
polynomial will have the form:

y(xO) = y0
(xO − x1)(xO − x2)
(x0 − x1)(x0 − x2)

+ y1
(xO − x0)(xO − x2)
(x1 − x0)(x1 − x2)

+ y2
(xO − x0)(xO − x1)
(x2 − x0)(x2 − x1)

(1)
For regular mesh size ∆x we get:

y(xO) = y0
ξ(ξ − 1)

2
+ y1

(ξ + 1)(ξ − 1)
−1

+ y2
(ξ + 1)ξ

2
, (2)

where ξ = xO−x1
∆x .
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2D academic experiments

In order to evaluate the results we have used three tests based on the classical
Robert bubble test:

• warm (+0.15K) and cold (-0.5K) bubbles with smooth boundary in the
field of constant potential temperature (300K)

• the same bubbles advected with the wind speed of 2m/s

• warm bubble (+0.5K) with sharp boundary in the field of constant po-
tential temperature (300K) advected with the wind speed of 2m/s.

The reference solution uses the quadratic interpolator.

Figure 1: Bubble test – perturbation of potential temperature after 10 min: quadratic interpo-
lator (top left), quadratic with ENO stencil (bottom left) and their quasi-monotonic versions (right
column)
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Figure 2: Advected bubble – perturbation of potential temperature after 10 min: quadratic
interpolator (left) and using ENO stencil (right)

Figure 3: Advected bubble – perturbation of potential temperature after 10 min: quasi-monotonic
versions of quadratic interpolator (left) and using ENO stencil (right)

In figure 1, we can see that when applying ENO the solution becomes
much smoother and the gradients are less sharp. Also, the quasi-monotonic
treatment doesn’t lead to much different solution because using ENO already
removes many of the details in the bubble plot (figure 2). In the case of
advected bubble and quasi-monotonic treatment, we can observe in the bubble
test (figure 3) that the quadratic interpolator produces some distorsions in the
bottom part of the bubble in contrast to the one applied on ENO stencil.
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2.2 WENO scheme

WENO is the weighted variant of the ENO scheme. In the second order
WENO scheme, instead of choosing between two stencils, we use a weighted
combination of the two 3 point stencils.

y = p1 · w1 + p2 · w2, w1 + w2 = 1 (3)

with w1 +w2 = 1 Here, p1 is the interpolated value on the first stencil and p2

the value on the second stencil. In the ENO interpolation case, this weights
would be either 0 or 1, depending on the stencil used for interpolation. The
way of choosing these weights for the two polynomials is not strictly defined.
Here, the weights were chosen as:

w1 =
1
2

+ 4
(

S1

S1 + S2
− 1

2

)3

(4)

w2 =
1
2
− 4

(
S1

S1 + S2
− 1

2

)3

(5)

where:
S1 = |y2 − 2y1 + y0|+ ε, S2 = |y3 − 2y2 + y1|+ ε (6)

(ε is a small number being used just for numerical safety, to prevent division
by 0).

This method has been tested in 2D academic experiments with cold and warm
bubbles (as described in subsection 2.1). Figure 4 shows that for the WENO
combination interpolation, the bubble contains much of the details contained
in the bubble result for the quadratic interpolator, still with less sharp gra-
dients. As for the case of advection (figure 5), we can see that the WENO
interpolation is smoother and less noisy then the quadratic interpolator (sim-
ilar to ENO , figure 2 and 3). Also, the deformation that appears when
applying advected and quasi-monotonic versions is still present for the two
interpolators.
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Figure 4: Bubble test – perturbation of potential temperature after 10 min: quadratic interpolator
(top left), quadratic with WENO combination (top right) and their quasi-monotonic versions (second
row)
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Figure 5: Advected bubble – perturbation of potential temperature after 10 min: quadratic
interpolator (top left), quadratic with WENO combination (top right) and their quasi-monotonic
versions (second row)

2.3 Mixture of cubic Lagrange and linear interpolator

Another method for semi-Lagrangian interpolations is one that uses variable
accuracy, the interpolated variable being a weighted combination of cubic La-
grange and linear interpolator, with the purpose of removing the overshoots
in the vicinity of discontinuities by using non-overshooting linear interpolator
there, while keeping accurate cubic Lagrange interpolator in smooth part of
the solution. The interpolated variable has the following form:

p = pc · (1−W ) + pl ·W, (7)
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where pc is the cubic interpolator and pl the linear interpolator,

W = w2 · (3− 2w), (8)

w =
(3

2

max(|y1 − y0|+ ε, |y2 − y1|+ ε, |y3 − y2|+ ε)

|y1 − y0|+ |y2 − y1|+ |y3 − y2|+ 3ε
− 1

2

)α
(9)

The term in bracket in equation (9) is used as smoothness indicator, approach-
ing 1 when total variation of y is dominated by its change in single interval
and being 0 when y changes linearly; α is a tuning exponent which controls
the amount of linear interpolator, in shown experiments value α = 2 was used.
Using higher α would give results closer to cubic Lagrange interpolator, while
lower α would give smoothed solution with less overshoots. Also, the manner
of choosing between cubic Lagrange and linear interpolation could use differ-
ent formula.

Looking at the figures below (figure 6 and 7), we can see that this kind of
variation between cubic and linear interpolation gives a solution sharper than
ENO interpolation (figure 1) and much similar to WENO (figure 4) in the
bubble test.

Figure 6: Bubble test – perturbation of potential temperature after 10 min: quadratic interpolator
(left), cubic Lagrange/linear variation (right)
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Figure 7: Bubble test – perturbation of potential temperature after 10 min, quasi-monotonic
versions of: quadratic interpolator (left), cubic Lagrange/linear variation (right)

Figure 8: Advected bubble – perturbation of potential temperature after 10 min: quadratic
interpolator (top left), cubic Lagrange/linear variation (top right) and their quasi-monotonic versions
(second row)
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Figure 9: Sharp warm bubble test with advection – perturbation of potential temperature:
quadratic interpolator (top left), quadratic with ENO stencil (top right), cubic Lagrange/linear
variation (bottom left) and quadratic with WENO combination (bottom right)

It is obvious from the plots obtained with the sharp warm bubble test ( above)
that the most smoothing interpolator is the one with ENO stencil, while the
solution for the quadratic and WENO combination has more sharp gradients
and is very similar to the one for cubic Lagrange and linear combination
interpolator. On the other hand, we know that the analytical solution is
symmetric, so that asymmetry on the plots in figure 9 is distortion due to
background advection. Most symmetric solution is that of quadratic ENO,
but this is at the expense of lost sharpness.
These results may be confirmed in the 1D linear advection test. For this
purpose we chose an advection of a sine wave with the wavelength 20∆x to
demonstrate the behavior of interpolation technique on smooth functions and
linear advection of a rectangular pulse to demonstrate the behavior close to
discontinuities. The domain is periodic with the initial state being plotted in
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red, and with different colors used for the solution after several time periods.

– initial profile

– advected profile after 1 revolution

– advected profile after 2 revolutions

– advected profile after 3 revolutions

– advected profile after 4 revolutions

– advected profile after 5 revolutions

Figure 10: Linear advection of sine wave in periodic domain (CFL number = 0.2): quadratic
interpolator (top left), quadratic with ENO stencil (bottom left), cubic Lagrange/linear variation
(top right) and quadratic with WENO combination (bottom right)

It can be seen in figure 10 that in the case of linear advection of the
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sine wave in periodic domain, the solution provided using second order ENO
interpolation is the most damping one, while the interpolation using WENO
combination gives slightly better results then the quadratic interpolator, both
being burdened with a phase error.

Figure 11: Linear advection of rectangular pulse in periodic domain (CFL number = 0.2):
quadratic interpolator (top left), quadratic with ENO stencil (bottom left), cubic Lagrange/linear
variation (top right) and quadratic with WENO combination (bottom right)

For a rectangular pulse, we get similar results concerning diffusivity and
phase error, while all three proposed techniques remove overshooting present
in the reference solution well, biggest residua being present in the solution with
WENO. We can easily observe that while the interpolator using ENO stencil is
the most damping one, the quadratic interpolator produces the biggest phase
error of the four interpolators, otherwise being very similar to the quadratic
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with WENO combination. We can see from the figures above that the re-
sults obtained in the one-dimensional case are consistent with the ones for the
two-dimensional case. On the other hand, because of the nature of this test
experiments with another CFL number could give slightly different results,
but other values were tested (not shown) and the solution is robust.

Figure 12: Linear advection of sine wave in periodic domain - first row; linear advection of
rectangular pulse in periodic domain - second row: cubic Lagrange interpolator - left, cubic Lagrange
and ENO stencil - right

Since the quadratic interpolators do not give satisfactory accuracy, our aim
would be to apply similar techniques on at least cubic interpolators. For a
1D cubic interpolation, one needs 4 grid points and with 6 consecutive grid
points 1, 2, 3, 4, 5, 6, the ENO technique will choose the smoothest solu-
tion from those obtained on 1 − 2 − 3 − 4, 2 − 3 − 4 − 5 and 3 − 4 − 5 − 6
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stencils. Thus to realize ENO or WENO methods in 1 dimension 6 points
are needed. To implement cubic ENO or WENO methods in 3 dimensions, a
6x6x6 points stencil is needed in SL scheme. This makes the implementation
of cubic ENO or WENO method technically demanding, and the increase in
the number of high order (cubic) interpolations will create a triple increase in
the computational time exigency. Those disadvantages could be balanced with
the advantages of accuracy obtained by its application. This is demonstrated
in 1D linear advection test.
Figure 12 shows that the third order accuracy ENO scheme (using cubic La-
grange interpolator) is the best candidate from the ones seen so far. The
solution provided by this one is the most similar to the original function and
is clearly better then using just cubic Lagrange interpolator. In the case of
rectangular pulse, using this scheme helps to reduce the overshootings, while
for the sine wave the solution provided is almost identical to the original func-
tion.

3 Conclusion

It can be concluded from the tests made that the second order ENO inter-
polation produces a very smooth solution such that it would not be a better
replacement for the interpolators used at the moment. On the other hand, it
was shown that the weighted variant, the WENO scheme could lead to better
results. Another advantage of this scheme would be the higher accuracy.
Even if cubic Lagrange interpolator with ENO stencil was not yet implemented
in 2D model, results obtained with 1D linear advection equation demonstrate
its clear superiority over other tested approaches. One can thus hope that it
will provide sharp bubble solution practically free from overshoots, more resis-
tant against deformations caused by quasi-monotonic treatment or constant
background advection. Taking this into account we consider this technique
promising and worth to be tested in 2D or 3D experiments despite of being
technically and computationally demanding. This work is left for future re-
search.
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