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1 VFE implementation

The main subject of the stay was the VFE implementation developed by Josef
Vivoda and Petra Smoĺıková. There is a purpose of writing a paper about this
issue in a scientific review, based on the HIRLAM Newsletter number 60, August
2013, Finite elements used in the vertical discretization of the fully compressible
forecast model ALADIN-NH by Josef Vivoda and Petra Smoĺıková.

Some issues were discussed and worked out.
First, as we were advised, in order to write the paper is should be demon-

strated that the VFE scheme improves the forecast when compared with the
operational VFD scheme. This task seems not to be easy, as the improvement in
the accuracy of the vertical operators is somewhat masked with other sources of
error, as physical parametrization and time stepping. Comparison of analytical
and numerical normal modes, without time discretization and for a fixed hori-
zontal wave number, could help to demonstrate the higher accuracy of the VFE.
However, this exercise was not possible, as we do not have analytical normal
modes of the whole linear system in the mass based vertical coordinate. Linear
two dimensional dry tests could help in demonstrating the higher accuracy of
the VFE scheme. To this end, an analytical linear solution of the Euler equa-
tions over non flat orography must be constructed. An extension of the work of
An analytic solution for linear gravity waves in a channel as a test for numer-
ical models using the non-hydrostatic compressible Euler equations by Michael
Baldauf and Slavko Brdar could help to this end.

Another point of interest was the transformation from vertical velocity to
vertical divergence. This part of the vertical discretization was still first order
and then a bottle neck which should be solved. It is necessary for this purpose
to dispose of a set of vertical integral and derivative operators that are exactly
invertible. Josef Vivoda and Alvaro Sub́ıas solved this problem independently
and so I did. The solution are similar in the sense that all are based on the
fact that the integral of a B-spline of order k is a B-spline of order k + 1 and
the derivative of a B-spline of order k + 1 is a B-spline of order k, because
the integral operator increases in one the continuity of the function and the
derivative decreases it in one. In this report there is a full explanation of the
method I have found with convergence tests. There are two points that are not
satisfactory in the results. Firstly, the derivative-integral condition is not exactly
fulfilled although the error is constant when applied repeatedly the derivative-
integral transformations. Secondly, the error in the derivative operator has
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an oscillatory pattern, although it satisfies convergence for L∞ and L2 norms.
Whether this facts can affect the full non linear model behavior is not an easy
question to answer.

A third point of interest was why boundary conditions in the vertical dis-
cretization are so important for the linear and non linear model stability. Josef
Vivoda has got a VFE stable model for some choice of the vertical laplacian,
integral operators and boundary conditions. However, from my point of view it
will be interesting to better understand, if it is possible, the relations between
the vertical laplacian boundary conditions and the stability. Also, which are
the boundary conditions for the integral operators that are more appropriate
for satisfying the constraints of the linear system.

In conclusion, I have the feeling that the VFE scheme is mature and a non
linear stable model have been implemented. However, there are some open
questions that could be answered to try understand some important points.
The answers of this questions could help to publish the work, as the scientific
community like to know not only that a VFE implementation works but why.
For this objective, a more systematic study of the impact of boundary conditions
in the stability of the model could help. I will continue the work on this topic
during next weeks. The conclusions, if any, will be reported in a separate
document.

2 Integral and derivative operators

The derivative and integral operators in this section are

D(f)(z) =
∂f

∂z
(z)

Q(f)(z) =

∫ z

0

f(y)dy

The invertibility conditions for this operators are

(D ◦Q)(f) = f

(Q ◦D)(f) = f − f(0)

Then we seek for three matrices D, Q and E such that, when applied to a
discretized function f , verify

D ·Q · f = f

Q ·D · f = f −E · f

where E · f is an extrapolated value of function f at z = 0. Here the function f
is given at full levels without boundary conditions, therefore value of function
f at z = 0 must be extrapolated numerically.

The method described here can be modified to include boundary conditions.
In that case, boundary conditions should be consistent in the sense that, for
instance, if f is zero at boundaries then the Q(f) must have first derivative zero
at boundaries.
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Figure 1: B-spline basis for N = 10 full levels regularly spaced.

2.1 Full levels and B-spline representation

Full levels are a set of N values {zi} between 0 and 1. In the test shown bellow
full levels are regularly spaced, although they can be placed in any convenient
set of full levels. The B-splines knots are calculated from full levels. The number
of knots is K = N + B − C being N the number of full levels, B the number
of boundary conditions and C the order of the splines. There are not boundary
conditions (B = 0) and the B-splines used in the test are linear, cubic or quintic
(C = 1, 3, 5). In figure 1 are plotted the B-spline basis for N = 10 and C = 3.
The B-spline basis is a set of N piecewise polynomials {Si(z)}. The matrix S2L
transforms from B-spline space to full levels and it is defined as

(S2L)ij = Sj(zi) for i, j = 1, . . . , N

The inverse L2S = S2L−1 transforms from full levels to B-spline space. The
interpolated value of f at z = 0, which is necessary for the derivative operator,
is

f0 = E · f

There are many ways of defining the extrapolating matrix E. The one used here
is to extrapolate the function using the B-spline representation given by L2S.

2.2 Integral operator

The construction of the integral operator Q is as follow

Q = Q̂ · L2S

where the matrix Q̂ is

(Q̂)ij =

∫ zi

0

Sj(y)dy for i, j = 1, . . . , N
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2.3 Derivative operator

The construction of the derivative operator D is as follow

D = Q−1 · (I−E)

where the matrix I is the identity and matrix E gives the extrapolated value at
z = 0. The reason to include the E operator is to remove the constant function
f0 consiting of the value of the function at z = 0, because Q−1 must be applied
to functions which are zero at z = 0 as Q returns always zero at z = 0.

2.4 Invertibility conditions

The invertibility conditions are

D ·Q = Q−1 · (I−E) ·Q = I−Q−1 ·E ·Q
Q ·D = Q ·Q−1 · (I−E) = I−E

The first condition is fulfilled if E ·Q · f = 0. Although this is true analytically,
because the definite integral of any continuous function from z = 0 is zero
at z = 0, it is not in the discretization. However, there are two facts to be
considered. One is that the error does not grow when applying many times the
derivative and integral operators. This is easily shown taking into account that
by construction operator E is idempotent, that is En = E. As a consequence
I−E is idempotent as well and therefore

(Q ·D)
n

= (I−E)n = I−E

On the other hand

(D ·Q)
n

= Q−1 · (I−E)
n ·Q = I−Q−1 ·E ·Q

Therefore, although D·Q 6= I, the error does not grow when applying repeatedly
the operators and it is always Q−1 · E ·Q. Moreover, the eigenvalues of D ·Q
have module 1 with very small imaginary part and real part near 1, except one
which is 0. This is consistent with the analytical counterpart of these operators.

2.5 Test

The test function used in the tests reported in this section is

f(z) =
30z5 − 19z4 + 55z3 + 12z2 − 65z + 21

30z4 + 60z2 + 30
ez

The integral and derivative are

D(f)(z) =
30z7 + 11z6 + 85z5 + 88z4 − 110z3 + 393z2 − 125zp− 44

30z6 + 90z4 + 90z2 + 30.0
ez

I(f)(z) =
30z3 − 49z2 + 25z − 4

30z2 + 30
ez +

4

30
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Figure 2: Derivative D and integral Q operators applied to the test function,
for cubic B-spline and 50 full levels. Above, analytical values in blue, numerical
values in red crosses. Bellow, the difference between numerical and analytical
values
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Figure 3: Upper left plot, f − E · f in blue and (Q · D)300 · f in red crosses.
Upper right plot, f in blue and (D · Q)300 · f in red crosses. Lower left plot
(Q ·D)300 · f − (f −E · f). Lower right plot, (D ·Q)300 · f − f .
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Figure 4: Convergence of integral operator Q. Blue, red and green colors cor-
respond to linear, cubic and quintic B-splines representation respectively. Con-
tinuous and dashed lines correspond to a linear logarithmic regression between
the L∞ and L2 errors and the grid spacing. The crosses are the errors when
considering a number of levels equal to 10, 15, 20, 25, 50, 75, 100, 150, 200, 300,
400 and 600.
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Figure 5: Convergence of integral operator D. Blue, red and green colors cor-
respond to linear, cubic and quintic B-splines representation respectively. Con-
tinuous and dashed lines correspond to a linear logarithmic regression between
the L∞ and L2 errors and the grid spacing. The crosses are the errors when
considering a number of levels equal to 10, 15, 20, 25, 50, 75, 100, 150, 200, 300,
400 and 600.
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The following test functions have been also considered

f(z) = sin3 z cos z

f(z) = b cos(az)ebz − a sin(az)ebz

f(z) = zn

f(z) = sin(kπz)

f(z) = cos(kπz)

f(z) = 1

The D and I operators are applied to the test function using B-spline of order
C equal 1, 3 and 5 and number of levels N equal 10, 15, 20, 25, 50, 75, 100, 150,
200, 300, 400 and 600. The results in figure 2 are for the case C=3 and N=50.
It is obvious that the error of the derivative has an oscillatory pattern which is
not satisfactory, although the error is bounded to the convergence values, as it
is shown later.

The invertibility properties for this test case are shown in figure 3.

(Q ·D)300 · f = f −E · f
(D ·Q)300 · f ' f

The first condition is fulfilled exactly, up to round-off error. The second con-
dition is not fulfilled, although it is constant as shown above and equal to
Q−1 ·E ·Q · f .

2.6 Convergence

The convergence of the operators are shown in figures 4 and 5. It is clear that
the errors of the integral are smaller than the errors of the derivative, although
the convergence, given by the slope of the linear logarithmic regression between
errors and grid spacing, are similar. The slopes are

C L∞(D) L2(D) L∞(Q) L2(Q)
1 1.344 1.075 2.002 2.006
3 3.144 3.246 4.356 4.335
5 5.139 5.565 6.914 7.185

For cubic splines the derivative converges at a rate of 3.1 and the integral at
4.3.

2.7 Python program

The python program is listed bellow. The scipy.interpolate package is used
for finding the B-splines. This package is able to use B-splines up to quintic
order. In particular, it is used the class LSQUnivariateSpline and the methods
integrate and derivatives. The linalg package is used for matrix inversion
and eigenvalues.

The routine find bspline basis finds the B-spline space given the full levels
and the top and bottom. The routine find operators D and I constructs the
derivative and integral operators. The routine plot test does and plots the
tests.
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import numpy as np
import matplotlib.pyplot as pt

# ----------------------------------------
# Integral and derivative operators at full levels of
# a function without boundary conditions

def levels(zn ,z0,z1):
yp = np.linspace(z0,z1 ,zn+1)
zp = yp[0:zn ]+0.5* yp[1]
return zp

def find_bspline_basis(zn,z0,z1 ,zp):
# interpolate package
import scipy.interpolate as it
# nodes
xp = zp.copy ();
xn = zn; x0 = z0; x1 = z1; xp[0] = x0; xp[zn -1] = x1
# internal knots depending on spline order
kp = xp[int((kc+1)/2): - int((kc +1)/2)]
# matrix from level to spline
l2s = np.zeros([xn,xn])
# find l2s
for i in range(0,xn):

# value of the function at model levels
yp = np.zeros ([xn]); yp[i] = 1.0
# spline interpolation
sp = it.LSQUnivariateSpline(xp ,yp,kp ,k=kc)
# get coefficients
l2s[:,i] = sp.get_coeffs ()

# find s2l
s2l = np.linalg.inv(l2s)
# find set of splines
sps = []
for i in range(0,xn):

# value of the function at model levels
yp = s2l[:,i]
# spline interpolation
sp = it.LSQUnivariateSpline(xp ,yp,kp ,k=kc)
# add to set
sps.append(sp)

# plot set of splines
plot_splines(xn,x0,x1 ,sps)
# find set of splines from s2l
return sps

def plot_splines(xn,x0 ,x1,sps):
f,axarr = pt.subplots (1,1)
xs = np.linspace(x0,x1 ,1000)
for i in range(0,xn):

ys = sps[i](xs)
axarr.plot(xs,ys,’b-’)

f.savefig(’zn_ %03 d_splines.pdf’ % xn ,format=’pdf’)
pt.close ()

def find_operators_D_and_I(kc,zn):
# kc: spline order (3 cubic)
# zn: number of full levels and domain
z0 = 0.0; z1 = 1.0
# model levels
zp = levels(zn,z0 ,z1)
# b spline basis
sps = find_bspline_basis(zn,z0 ,z1,zp)
# Spline to level space without boundary conditions
S2L_op = np.zeros([zn,zn])
for i in range(0,zn):

for j in range(0,zn):
# values of the splines at model levels
S2L_op[j,i] = sps[i]. derivatives(zp[j])[0]

# Level to spline space without boundary conditions
L2S_op = np.linalg.inv(S2L_op)
# Integral operator
T_op = np.zeros ([zn ,zn])
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for i in range(0,zn):
# find definite integral on model levels
for j in range(0,zn):

T_op[j,i] = sps[i]. integral(z0,zp[j])
Q_op = np.dot(T_op ,L2S_op)
# How is it
print np.linalg.cond(Q_op)
print np.linalg.det(Q_op)
# constant function
I_op = np.eye(zn)
E_op = np.zeros ([zn ,zn])
for i in range(0,zn):

E_op[i,:] = L2S_op [0,:]
# Derivative operator
D_op = np.dot(np.linalg.inv(Q_op),I_op -E_op)
# return
return z0,zp,D_op ,Q_op ,E_op

def plot_test(zn,zp,fp ,IA_fp ,DA_fp ,Q_op ,D_op ,E_op ,name):
# Four axes , returned as a 2-d array
f,axarr = pt.subplots (2,2)
# integral
IN_fp = np.dot(Q_op ,fp)
axarr [0,0]. plot(zp ,IA_fp ,’b-’)
axarr [0,0]. plot(zp ,IN_fp ,’rx’)
axarr [0,0]. set_title(’Integral ’)
axarr [1,0]. plot(zp ,IN_fp -IA_fp ,’b-’)
axarr [1,0]. set_title(’Integral Error’)
# derivative
DN_fp = np.dot(D_op ,fp)
axarr [0,1]. plot(zp ,DA_fp ,’b-’)
axarr [0,1]. plot(zp ,DN_fp ,’rx’)
axarr [0,1]. set_title(’Derivative ’)
axarr [1,1]. plot(zp ,DN_fp -DA_fp ,’b-’)
axarr [1,1]. set_title(’Derivative Error ’)
f.savefig(name+’_I_and_D.pdf’,format=’pdf’)
pt.close ()
# Four axes , returned as a 2-d array
f,axarr = pt.subplots (2,2)
# integral derivative
QDN_fp = np.dot(np.linalg.matrix_power(np.dot(Q_op ,D_op),300),fp)
axarr [0,0]. plot(zp ,fp-np.dot(E_op ,fp),’b-’)
axarr [0,0]. plot(zp ,QDN_fp ,’rx’)
axarr [0,0]. set_title(’Integral derivative ’)
axarr [1,0]. plot(zp ,QDN_fp -(fp-np.dot(E_op ,fp)),’b-’)
print ’max abs QDN_fp -fp: %20.10e’ % np.max(np.abs(QDN_fp -fp))
# derivative integral
DQN_fp = np.dot(np.linalg.matrix_power(np.dot(D_op ,Q_op),300),fp)
axarr [0,1]. plot(zp ,fp,’b-’)
axarr [0,1]. plot(zp ,DQN_fp ,’rx’)
axarr [0,1]. set_title(’Derivative integral ’)
axarr [1,1]. plot(zp ,DQN_fp -fp ,’b-’)
print ’max abs DQN_fp -fp: %20.10e’ % np.max(np.abs(DQN_fp -fp))
f.savefig(name+’_ID_and_DI.pdf’,format=’pdf’)
pt.close ()
# Print errors
w = open(name+’_errors.txt’,’w’)
w.write(’D Linf L2: %20.10e %20.10e\n’ % (np.max(np.abs(DN_fp -DA_fp)),np.std(DN_fp -DA_fp )) )
w.write(’I Linf L2: %20.10e %20.10e\n’ % (np.max(np.abs(IN_fp -IA_fp)),np.std(IN_fp -IA_fp )) )
w.close

def make_test(kc,zn,zp ,Q_op ,D_op ,E_op ,z0):

# ----------------------------------------
# Test exp cos
ka = 11.0; kb = 3.0
fp = (kb*np.cos(ka*zp)-ka*np.sin(ka*zp))*np.exp(kb*zp)
IA_fp = np.cos(ka*zp)*np.exp(kb*zp)-1.0
DA_fp = ((kb**2-ka **2)*np.cos(ka*zp) -2.0*ka*kb*np.sin(ka*zp))*np.exp(kb*zp)
plot_test(zn,zp ,fp,IA_fp ,DA_fp ,Q_op ,D_op ,E_op ,’zn_%03 d_kc_%1 d_expcos ’ % (zn,kc) )

# ----------------------------------------
# Test cos function
ka = 11; kb = ka*np.pi

9



fp = np.cos(kb*zp)
IA_fp = +(np.sin(kb*zp)-np.sin(kb*z0))/kb
DA_fp = -np.sin(kb*zp)*kb
plot_test(zn,zp ,fp,IA_fp ,DA_fp ,Q_op ,D_op ,E_op ,’zn_%03 d_kc_%1 d_cos11 ’ % (zn,kc) )

for kc in [1,3,5]:
for zn in [10 ,15 ,20 ,25 ,50 ,75 ,100 ,150 ,200 ,300 ,400 ,600]:

z0,zp,D_op ,Q_op ,E_op = find_operators_D_and_I(kc,zn)
make_test(kc,zn ,zp,Q_op ,D_op ,E_op ,z0)
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