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A) What is the aim of the method?
· Starting from the usual ‘static’ exchange coefficients obtained by the ‘Louis’ method, we are searching a method of evolution of a prognostic TKE E which gives in return an equilibrium position corresponding to the said coefficients but which also allows for time variations around it. The whole procedure symbolically reads:


[image: image1.wmf]h

m

h

m

E

E

n

m

K

K

ACCOEFK

K

K

K

K

K

E

K

E

E

f

dt

dE

K

E

K

ACCOEFK

K

K

&

)

(

~

&

~

,

~

,

)

,

,

~

,

(

/

,

,

~

~

)

(

~

,

~

*

*

*

*

Þ

Þ

=

Þ

Þ

e

e

t

t


· This very simple algorithm (where the third line of course uses the inverse operator of that of the first line) will allow to keep results close to that of the current well tuned scheme, while introducing a prognostic component for the TKE. This will allow to study three kind of basic problems in a simplified but still hopefully realistic environment:

i. The time stability of the prognostic algorithm at long time steps;

ii. The vertical staggering problem;

iii. The anti-fibrillation properties of this pseudo-TKE scheme.

B) The ‘arbitrary’ choices for keeping simplicity

· For treating all aspects of static stability, we shall simply write:
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If ( is zero, one computes E only as if the atmosphere was neutral and the influence of the stability just comes afterwards from the ‘static’ (tilded) ratios. This solution is stable for E but decouples its computation from the (implicit) buoyancy term. If ( is one, one captures the full spirit of the proposal but the assumption that the stability dependency is everywhere the same is erroneous and leads to some chaotic behaviour for E. The use of some intermediate value for ( should allow a good compromise. Once this is done, the problem is reduced to the one for momentum and energy at an intermediated state between neutrality and the full stability-dependent computation of the ‘static’ K values.

· In this restricted case, for going from the full TKE formalism to the one corresponding to the ‘static’ computations, we shall use the method proposed by Redelsperger, Mahé and Carlotti (2001) for the link between TKE and surface similarity laws. We shall simply arbitrarily extend it to other cases than l=(z for z=>0. The choice of (  is in fact related to approximations we must do for the so-called (L & (L functions of RMC01. If we consider them as equal to one another ( is one, while if we say that their ratio is equal to Km/Kn ( is zero. Looking at Figure 6 or RMC01, one sees that we would need two regimes with a transition at Ri=0. Since this would probably be rather complex to implement and since most problems are likely to occur in the unstable case, we started by electing to have a single (  value for all the range of stabilities and to look at it mostly from the point of view of the near neutral regimes.

C) The basic equations for momentum and energy (using the notations of RMC01)


[image: image4.wmf]m

E

m

K

K

m

K

K

K

K

E

dv

l

A

E

C

L

E

C

K

K

l

A

C

K

E

E

l

A

C

E

L

C

K

E

E

z

E

K

z

E

A

dt

dE

e

e

e

e

e

e

k

t

a

k

k

t

r

r

=

=

=

÷

÷

ø

ö

ç

ç

è

æ

=

Û

=

=

-

+

¶

¶

¶

¶

+

=

1

~

~

)

~

(

1

1

)

(

*

2

*

*


In the first equation, the last term represents a simple version of the balance between shear plus buoyancy production/destruction on the one hand and dissipative effects on the other hand. The Newtonian time scale is chosen to be the one of the dissipation in the full TKE formalism.

D) The application of the second ‘arbitrary’ choice

We have (RMC01):
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and (RMC01 again) we want AK=A(. Then, introducing ( with
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we finally get the very simple set of equations:
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E) Time and space discretisation algorithm: the last two equations are only symbolically written here. It is sure that we shall need E to compute Km and Kh, but whether we should (before that) use the information of the past time-step or the tilded one for computing the diffusion and relaxation coefficients of the evolution equation for E remains an open question (assuming we shall not need something more complex like an iterative step). Such choices will determine the nature of the time integration and will influence its stability (see below).

The antifibrillation treatment (Bénard, Marki, Neytchev and Prtenjak, 2000) may or may not be associated to the ACCOEFK/ACDIFUS computations for the ‘usual’ prognostic variables, a fact that will allow a transparent evaluation of its impact for the diffusive part of a prognostic turbulent scheme, something otherwise quasi-impossible to obtain, to our knowledge. Of course the application involves an approximation since the coefficients will be computed for the tilded values and applied together with the non-tilded coefficients, but it is expected that this slight discrepancy will be of little impact compared to the yes/no choice about the scheme itself.

Even if it is not strictly speaking a fibrillation problem, there is also the risk of a stiff behaviour for the relaxation part of the prognostic equation for E. But we are here in a text-book example of the analysis by Kalnay and Kanamitsu (1988) with the P exponent equal to 0.5 (since the inverse Newtonian time scale is proportional to the square root of the TKE). Hence using an over-implicitness factor (=1.5 everywhere at each time step will give the closest possible solution to the fully implicit scheme, without the complexity of the change of variables of Brinkop and Roeckner (1995).

The staggering problem apparently comes from the KE/* and lm presence on half levels while E is needed on full levels (for being advected like all other prognostic variables). However the problem is symmetric: a (non-advecting) shifted E on half levels would see its relaxation towards its target values becoming straightforward, but the vertical diffusion of this quantity would loose its direct character (one would probably need to vertically interpolate diffusion coefficients and to invent a special treatment at the surface). On the contrary, keeping E on full-levels means: (a) a simple diffusion process alike that for other prognostic variables but (b) the need to get the relaxation for a given layer as the weighted average of two relaxations happening on the bounding half-levels (which is fortunately compatible with the use of a uniform over-implicitness factor, see above). This obviously means a three-level stencil in the vertical (the E values on the half-levels must also be interpolated -and this gives the 1/(( value when needed-) for the matrix of the implicit operator. But the latter is fortunately alike the one of the diffusion operator (except that the signs for the off-diagonal elements are opposite). Furthermore, if one uses the same choice (past time step or tilded) for both processes, the said coefficients are proportional to each other (by a factor proportional to ((l/(z)²) and one can thus readily verify that the combined matrix is diagonal-dominant and that its solution is linearly stable. For all these reasons it is most likely that we shall have a direct correct staggering operator with E on full-levels and no need to test any alternative solution.

However the staggered adaptation process possesses a potentially oscillating mode while the diffusion process does not. It might thus be interesting to make sure that the latter is always dominant in term of coefficients (keeping in mind for instance that E may go to zero while K* cannot). This makes it preferable to impose something proportional to ((z/() as a minimum value for l, this ensuring that the off-diagonal element of the matrix are negative or zero. The question whether this potential increase of l should or not influence back the tilded values of the exchange coefficients has yet to be studied.

Coming back to the time-sequence problem, we do have in principle four solutions in a non-iterative procedure (and four more if we use the E-results of a first pass for a second pass in the solution of the adaptation/diffusion equation). Among the four basic choices (for either the definitive solution or only the first pass) the ones with the same choice for both terms are to be privileged and the one of past time-step values for diffusion and tilded values for relaxation is to be discarded (see above). Furthermore going from E- to E(+) in the iterative procedure might be a more likely source of problems compared to a change of scope. Hence it seems (on the paper, in practice one might try all eight solutions for verification purposes) that we have four acceptable solutions (in decreasing order of interest, the first one being more expensive and hence only justified if really better):

· two passes: tilded/tilded & E(+)/E(+);

· one pass: tilded/tilded;

· one pass tilded/E-;

· one pass E-/E-.

Extensive tests have shown that the best solution is in fact the last one of the above series (no iteration of the computation and double use of the previous time step values).

Finally, there is the question whether the (slightly approximated, see above) antifibrillation treatment should also be applied to the diffusion process for E, when activated for other variables. The answer is difficult to assess a priori since the Richardson number is not directly dependent on KE but remains related to it (provided ( is non zero), and this question thus deserves some empirical testing. As first trial one could say that the amplifying factor might be the ( power of the one for momentum.

F) Numerical value: measurements seem to indicate a value of ( ( 0.52 for the first tuning constant of the scheme, once the ‘static’ computations are considered as given. The study of the (m, (L and (L expressions of RMC01 suggest that ( = 0.5 is a justified choice  for this second constant of the scheme.
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