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1 Introduction

Precision of numerical scheme depends not only on used discretizations, it can be
influenced also by choice of computational boundary conditions. Aim of this stay was
to test impact of one such choice in NH ALADIN. It is believed that inconsistent or
imprecise bottom boundary conditons (BBC) might contribute to so called “chimney
effect” in semi-lagrangian scheme.

2 Reformulation of BBC for term
∂p̃

∂π

Term
∂p̃
∂π

(where p̃ ≡ p− π is non-hydrostatic pressure departure) occurs in prognostic
equations for pseudovertical divergence d and horizontal wind v. In discretized system
computational boundary conditions for this term are needed at model bottom and top.
Bottom boundary condition will be studied here.

Warning:

In the following text it is assumed that map factor equals to one. As a consequence,

metric terms are zero. In general case they would appear in expression for
d
dt∇φS .

2.1 Continuous case

Momentum equations written in η coordinate together with free slip boundary condition
imposed at surface take the form (source terms V , W contain Coriolis acceleration):

dv

dt
= −

RT

p
∇p−

(
∂p̃

∂π
+ 1

)

∇φ+ V (1)

d

dt
(gw) = g2 ∂p̃

∂π
+ gW (2)

gwS = vS · ∇φS (3)

Equations (1)–(3) enable to eliminate time evolution and express vertical derivative
(
∂p̃
∂π

)

S
using only surface quantities vS , TS , pS , φS , VS and WS :

g2

(
∂p̃

∂π

)

S

=
d

dt
(gwS)− gWS =

d

dt
(vS · ∇φS)− gWS =

=
dvS

dt
· ∇φS + vS ·

d

dt
(∇φS)− gWS =

=

[

−
RT

p
∇p−

(
∂p̃

∂π
+ 1

)

∇φ+ V

]

S

· ∇φS + vS · [(vS · ∇)∇φS ]
︸ ︷︷ ︸

JS

−gWS =

= −

(
∂p̃

∂π

)

S

(∇φS)
2 +

[

−
RT

p
∇p−∇φ+ V

]

S

· ∇φS + JS − gWS

⇓

[g2 + (∇φS)
2]

(
∂p̃

∂π

)

S

=

[

−
RT

p
∇p−∇φ+ V

]

S

· ∇φS + JS − gWS
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(
∂p̃

∂π

)

S

=

[

−
RT

p
∇p−∇φ+ V

]

S

· ∇φS + JS − gWS

g2 + (∇φS)2
(4)

(

JS =
∂2φS

∂x2
uS

2 + 2
∂2φS

∂x∂y
uSvS +

∂2φS

∂y2
vS

2

)

Formula (4) clearly indicates that term
(
∂p̃
∂π

)

S
cannot be prescribed arbitrarily. It must

be consistent with other surface quantities.

2.2 Discrete case

In discrete case relation (4) cannot be applied directly, since model variables like v, p
and T are available only on full levels l. Their values on half levels l̃ must be determined
by interpolation, in case of top level 0̃ and bottom level L̃ by extrapolation. The aim is
to use as few extrapolation rules as possible. One such rule is used for surface wind vL̃,
which appears in free slip boundary condition (3):

vL̃ = vL (5)

Extrapolation rule (5) is sufficient for getting discrete formula analogical to (4). First
steps of derivation are similar to continuous case, giving:

g2

(
∂p̃

∂π

)

L̃

= −

(
∂p̃

∂π

)

L

∇φL · ∇φL̃ +

[

−
RT

p
∇p−∇φ+ V

]

L

· ∇φL̃ + JL − gWL̃ (6)

(

JL =
∂2φL̃

∂x2
uL

2 + 2
∂2φL̃

∂x∂y
uLvL +

∂2φL̃

∂y2
vL

2

)

First term on right hand side of equation (6) is problematic, since it contains derivative
∂p̃
∂π

needed at full level L. But pressure departure p̃ is a full level quantity. Vertical
derivative of full level quantity X cannot be evaluated directly on full level l, since
difference formula requires half level values X

l̃
and X

l̃−1
. Possible solution is to employ

vertical averaging, e.g. linear interpolations. It can be introduced in two ways:

1. Interpolate X into half levels l̃ and l̃ − 1, then compute derivative at full level l.

2. Compute derivatives of X at half levels l̃ and l̃− 1, then interpolate them into full
level l.

Interpolation weights may be based on any vertical coordinate (z, π, η, . . . ). If the
levels are spaced equidistantly in chosen coordinate, both approaches are equivalent.
They become different for irregular level spacing. It was shown by C. Smith that second
approach has generally smaller leading error term.

None of these approaches can be used directly for lowest full level L. First one

requires extrapolation rule for p̃L̃, while second one requires boundary value
(
∂p̃
∂π

)

L̃
:

(
∂p̃

∂π

)

L

= εL

(
∂p̃

∂π

)

L̃

+ (1− εL)

(
∂p̃

∂π

)

L̃−1

(7)
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However, second approach combined with equation (6) can provide formula for term
(
∂p̃
∂π

)

L̃
, without introducing any other extrapolation rule. Inserting (7) into equation

(6) gives:

(g2 + εL∇φL · ∇φL̃)

(
∂p̃

∂π

)

L̃

= −(1− εL)

(
∂p̃

∂π

)

L̃−1

∇φL · ∇φL̃ +

+

[

−
RT

p
∇p−∇φ+ V

]

L

· ∇φL̃ + JL − gWL̃

(
∂p̃

∂π

)

L̃

=

−(1− εL)

(
∂p̃

∂π

)

L̃−1

∇φL · ∇φL̃ +

[

−
RT

p
∇p−∇φ+ V

]

L

· ∇φL̃ + JL − gWL̃

(g2 + εL∇φL · ∇φL̃)
(8)

Formula (8) prescribes bottom boundary condition for term
∂p̃
∂π

consistently with
dynamical equations. It was derived using only extrapolation rule (5). When model
levels L and L̃ coincide, weight εL equals to one and formula (8) reduces to (4).

Outlined approach cannot be used for obtaining top boundary condition analogical
to (8). This is due to the fact that in model formulation top geopotential φ

0̃
depends

on time. Free slip boundary condition at model top therefore takes more general form
than (3):

gwT =
∂φT

∂t
+ vT · ∇φT (9)

Presence of extra term
∂φT

∂t
disables elimination of time evolution from the system (1),

(2), (9).

2.3 Discretization of X and Z terms

Described approaches to discretization of term
∂p̃
∂π

apply also to other terms, namely X
and Z:

X = −
∂v

∂φ
· ∇φ

Z = −
∂v

∂φ
· ∇(gw)

X term is part of 3-dimensional divergence D3, while Z term occurs in prognostic
equation for pseudovertical divergence d (exact form of Z depends on used d variable,
given one is valid for d = d3). Both terms can be symbolically written as:

−
∂v

∂φ
· ∇ψ (10)

Velocity v is full level quantity, variable ψ is generally half level quantity and geopotential
φ is available on both full and half levels. Term (10) is needed on full levels. Currently
it is discretized using per partes rule combined with first approach:

(

−
∂v

∂φ
· ∇ψ

)

l

=

[

−
∂

∂φ
(v · ∇ψ) + v ·

∂

∂φ
∇ψ

]

l

=

= −
v

l̃
· ∇ψ

l̃
− v

l̃−1
· ∇ψ

l̃−1

φ
l̃
− φ

l̃−1

+ vl ·
∇ψ

l̃
−∇ψ

l̃−1

φ
l̃
− φ

l̃−1

=

=
(vl − v

l̃
) · ∇ψ

l̃
+ (v

l̃−1
− vl) · ∇ψl̃−1

φ
l̃
− φ

l̃−1

(11)
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Second approach leads to expression:

(

−
∂v

∂φ
· ∇ψ

)

l

= εl

(

−
∂v

∂φ
· ∇ψ

)

l̃

+ (1− εl)

(

−
∂v

∂φ
· ∇ψ

)

l̃−1

=

= −εl
vl+1 − vl

φl+1 − φl

· ∇ψ
l̃
− (1− εl)

vl − vl−1

φl − φl−1

· ∇ψ
l̃−1

(12)

Formula (11) requires interpolation of velocity v into half levels together with boundary
conditions for v

0̃
and vL̃. They are usually chosen as:

v
0̃
= v1 vL̃ = vL (13)

Formula (12) requires boundary conditions for derivatives
(
∂v

∂φ

)

0̃
and

(
∂v

∂φ

)

L̃
. They can

be set to zero, as analogy to conditions (13).
C. Smith showed that formula (12) is generally more precise than (11). It would

therefore be desirable to explore its impact on model accuracy.

2.4 Code implementation

Reformulated BBC for term
∂p̃
∂π

is calculated in subroutine GNHGRP, just before final
computation of pressure gradient term. It is then transferred as argument PDTILP into
subroutine GNHPDVD, where it is used in prognostic equation for pseudovertical divergence
d. Transfer must be done via level of CPG:

CPG

|

CPG_GP

| |

| GNHGRP

|

CPG_DYN

|

GNHDYN/LACDYN

|

GNHPDVD

Interpolation weights εl needed in equations (7), (8) are based on logarithmic pressure
thicknesses αl and δl:

εl = 1−
αl

δl
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3 Experiments

All experiments were done using 2D vertical plane model. Non-linear non-hydrostatic
(NLNH) orographic flow was chosen as test case, since chimney problem occurs in this
regime.

3.1 Common settings

• Initial state:

– temperature profile with constant Brunt-Väisälä frequency N = 0.01 s−1

up to tropopause at height 21 km, isothermal above tropopause

– sea level temperature 293K

– tropopause temperature 133K

– constant wind profile with V = 10ms−1

– sea level pressure 101 325Pa

• Orography: Bell shaped mountain.

height: h = 1000m
half-width: a = 1000m

• Dimensionless flow parameters:

CL =
Nh

V
= 1.0 (CL ¿ 1⇒ linear flow)

CH =
V

Na
= 1.0 (CH ¿ 1⇒ hydrostatic flow)

• Geometry:

∆x [m] 200 (a = 5∆x)

∆z [m] ≈300 (regular z-levels)

NDGUX 128 (C+I zone)

NDGL 128 (no E zone)

NBZONG 14 (I zone)

NSMAX 42 (quadratic grid)

NFLEVG 100 (30 levels above tropopause)

• Vertical coordinate: σ

• Coupling files: Identical with initial file (time constant LBC).

• Integration settings:

NPDVAR 2

NVDVAR 3

SIPR [Pa] 90000.

REPONBT [m] 20000.

REPONTP [m] 29500.

VESL 0.0

XIDT 0.0
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3.2 Scheme dependent settings

euler sl3tl sl2tl

∆t [s] 2.5 5.0 10.0

NSTOP 2000 1000 500

REPONTAU [s] 100. 100. 50.

RCMSLP0 0.0 0.0 1.0

SITR [K] 220. 220. 300.

SITRA [K] 220. 220. 50.

LPC OLD OLD FULL

NESC

NSITER 1 1 3

Remark:

Due to the bug in SUPONG, sponge applied in 3 time level scheme is two times stonger
than in 2 time level scheme (using the same absorption timescale REPONTAU). That is
the reason why different value of REPONTAU was used with 2 time level scheme.

3.3 Experimental results

During preparation of clean reference experiment it was found that turning on horizontal
diffusion can create chimney in vertical velocity field w even with eulerian advection.
This was bit surprising, since up to now it was more or less believed that chimney
problem is specific to semi-lagrangian advection.

On figures 1, 2 and 3 there is w field plotted after 2000 timesteps of eulerian
integration. When horizontal diffusion is not used, field is noisy (figure 1). Using weak
diffusion (HDIRDIV=HDIRVD=25., HDIRT=125.) reduces the noise, but there are first indi-
cations of chimney formation (figure 2). With stronger diffusion (HDIRDIV=HDIRVD=5.,
HDIRT=25.) fields are smooth, but chimney is fully developed (figure 3).

Several tests with eulerian scheme were performed in order to explore circumstances
of chimney formation. It was recognized that:

• Chimney evolves very quickly, it can be identified after several tens of timesteps.

• Chimney is not sensitive to choice of pseudovertical divergence d.

• Chimney is not sensitive to choice of vertical coordinate (σ/η).

• Turning off the sponge does not affect chimney formation. Hovewer, integration
becomes unstable without sponge.

• Chimney evolves regardless temperature is diffused or not. It is sufficient to diffuse
divergence for chimney to occur.

• Stronger diffusion causes stronger chimney.

Instability occured in some tests. One possible source could be horizontal diffusion
of temperature field. Diffusion is not applied directly on temperature, but on tempera-
ture reduced to constant altitude. Reduction is done approximately, assuming standard
atmosphere, which is too far from stratification used in experiments. It was therefore
decided not to diffuse temperature (HDIRT=0.).

Another situation in which instability occured is when strength of diffusion applied
to horizontal and vertical divergence differs too much.
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Impact of reformulated BBC is shown on figures 5–16. Vertical velocity field w after
5000 s integration is displayed. Impact is generally very weak, with almost no influence
on chimney. If there is an influence, then it slightly amplifies chimney.

4 Unfinished work

Too many things remained unfinished:

• Reformulated BBC for term
∂p̃
∂π

is coded assuming zero metric terms and zero
Coriolis parameter. This means that code can be used only for 2D academic tests.

• I was not able to debug code with alternative discretization of X and Z terms,
even if modification itself takes only few lines. There is some problem with correct
array allocations needed for transfer of additional t −∆t quantities from CPG_GP

via CPG to GNHPDVP.

5 Conclusions

Understanding of chimney mechanism is very difficult task, since it is connected with
non-linear regimes. It can be summarized that:

• Impact of reformulated BBC on model results is very weak. Influence on chimney
effect is neutral or slightly amplifying. Therefore, proposed BBC reformulation
seems to be useless.

• Chimney effect occurs in NLNH regimes with semi-lagrangian advection. However,
when horizontal diffusion is used it can occur even with eulerian advection. It is
therefore highly probable that diffusive properties of semi-lagrangian interpola-
tors are at least partially responsible for chimney formation when semi-lagrangian
advection is used.

• For the moment there are two known ways how to suppress chimneys:

1. advection of vertical velocity w instead of pseudovertical divergence d
(implemented by C. Smith)

2. advective BBC treatment for term
∂p̃
∂π

(implemented by P. Smoĺıková)

Both solutions are implemented only for semi-lagrangian advection scheme. First
one indicates that chimneys might be caused by inconsistency between prognostic
equation for d and free slip boundary conditions, while second one indicates that
they might be generated by imprecise BBC treatment of some terms. Definite
answer is not known for the moment.
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6 Code info

Modifications were done on top of cycle 25t2. Two versions of code were used:

00 = reference version, including bugfix from J. Vı́voda

01 = 00 + reformulated BBC for term
∂p̃
∂π

Modified sources (voodoo):

~mma157/utemp/cycle_25t2/mod_00_ald/

mod_00_arp/

mod_01d00_ald/

mod_01d00_arp/

Sources + dependencies for compilation (voodoo):

~mma157/utemp/cycle_25t2/dep_00_ald/

dep_00_arp/

dep_01_ald/

dep_01_arp/

Loading scripts (voodoo):

~mma157/utemp/cycle_25t2/load/load_00_sx4

load_01_sx4

Executables (archiv):

~mma157/bin/master_al25t2_00_sx4

master_al25t2_01_sx4

Integration scripts (sx6):

~mma157/m2d/exp/script_03/

10


