Surface assimilation with **EKF** and conventional observations Helga Tóth Hungarian Meteorological **Service**

toth.h@met.hu

- Oper Arome-Hungary: 2.5 x 2.5 km horizontal resolution, 490 x 310 points, 60 vertical levels, cy 38 + Surfex V7.2
- Surface analysis in oper Arome-Hungary: downscaled ALARO-8 km surface analysis
- Experimental OI-MAIN (in parallel suit since 06.09.2016)
- EKF: Observation T2M and RH2M used => produce surface analysis (TG1, TG2, WG1 and WG2)
 - ▶ 1 assimilation (coldstart guess))
 - Forcings: inline fullpos from 17 m
 - Surfex: 4 tiles, 1 patch
 - ➤ ISBA: 3 layers, Canopy
 - B matrix: fixed

Increments

CLSTEMPERATURE 2016/05/09 z06:00 +6h T2M G-C

Surfex v7.2 (offline + EKFAssim) installation at Jan. 2016

► Testing of the validation

1. Single obs:

Guess warmer, than the canari obs.

TG1 G – AG1 increments (GUESS-ANAL) for 09/05/2016 12 UTC

TG2~G-A

The impact on TG1 is smaller, than on TG2 (similar behav. with Surfex 6)

The analysis colder, than the guess \square

Data Assimilation Working Days, Budapest, 21-23 Sept., 2016

Problem: mountain effect

RH2M G-C

CLSHUMI.RELATIVE 2016/05/09 z06:00 +6h

Guess is drier, than the Canari obs.

WG1~G - A WG1 increments (GUESS-ANAL) for 09/05/2016 12 UTC

WG2~G – $A^{\,\scriptscriptstyle{WG2\,increments\,(GUESS-ANAL)\,for\,09/05/2016\,12\,UTC}}$

The soil analysis is wetter

П

-0.08
-0.08
-0.08
-0.08
-0.08
-0.08
-0.08

The impact of the EKF on WG1 and WG2 are in similar order

order
Data Assimilation Working Days, Budapest, 21-23 Sept., 2016

- **Tests with all obs.**
- 1. 31. Aug., 2016 12 UTC (warm weather with long-life AC)
 - comparison with OI-MAIN

Data Assin

2016

OI-MAIN produced colder but dryer soil analysis, than the EKF

Jacobians:

dT2M/dTG Jacobian-map: dT2m/dTG1 for 31/08/2016 00 UTC

Incr. soil TG1 => incr. T2m

dRH2M/dT Jacobian-map: dRH2m/dTG1 for 31/08/2016 00 UTC

Incr. soil TG1 => decr. RH2m

dT2M/dTG

Jacobian-map: dT2m/dTG2 for 31/08/2016 00 UTC

Incr. soil TG2 => incr. T2m (effect is larger, than TG1)

dT2M/dWG Jacobian-map: dT2m/dWG1 for 31/08/2016 00 UTC

Incr. soil WG1 => decr. T2m

dRH2M/dWG

Jacobian-map: dRH2m/dWG1 for 31/08/2016 00 UTC

Incr. soil WG1 => incr. RH2m

dT2M/dWG2

Jacobian-map: dT2m/dWG2 for 31/08/2016 00 UTC

Incr. soil WG2 => decr. T2m (effect is smaller then WG1)

Incr. soil TG2 => decr. RH2m dRH2M/dWG

Incr. soil WG2 => incr. RH2m

Jacobians seems OK

05. Sept., 2016 12 UTC (cold front)

The structure of soil temp. increments are similar, but the effect of OI-MAIN is larger!

OI-MAIN produced smaller soil moisture increments than the EKF

► Impact on the forecast

EKF produced more correct T2M and RH2M forecasts, than the OI-MAIN. + soil moisture predictions differ greatly

Data Assimilation Working Days, Budapest, 21-23 Sept., 201

T2M forecasts are similar, and EKF produced more correct RH2M forecast, than the OI-MAIN. + deep soil moisture predictions differ greatly

Plans

- More tests in different analysis time (00, 06, 18 UTC), and in different weather situations
- ▶ Optimalization of the method: reference run + 4 perturbed runs in parallel
- ► EKF+3DVAR assim. + forecast for longer period (verification the forecasts)
- Assimilation at the end or at the beginning of the window?
- EKF of satellite WG1 observation