
CANARI “summer problem”

Description of problem

During summer 2010, verification results showed bad behavior of the production from assimilation 
system  (ASSIM)  when  compared  with  the  operational  setup  production  (OPER)  (details  about 
assimilation  and  operational  setup  can  be  found  in  Appendix).  The  problem was  with  a  2  meter 
temperature (T2m) and relative humidity (RH2m) BIAS results. With start of the “summer” period in 
June, positive T2m BIAS for ASSIM was notices in the morning hours and for the same time OPER 
had almost no T2m BIAS. However, in the afternoon hours ASSIM had a smaller negative T2m BIAS 
than OPER. BIAS of ASSIM relative humidity at 2m was more or less neutral in June. As the summer 
progressed, ASSIM grow bigger T2m BIAS than OPER in July and August especially for the afternoon 
hours,  while  for RH2m, ASSIM had bigger  positive BIAS than OPER in the afternoon hours and 
smaller negative BIAS in the morning hours (Figure 1).

Figure 1: VERAL scores for production from ASSIM (red) and OPER 
(black) for period June-August. Scores are computed every six hours and 
averaged over all SYNOP and TEMP stations in the ALADIN domain.  
Results show BIAS, root mean square error (RMSE) and standard deviation  
(STD) against forecast hour. BIAS-dashed lines, RMSE-full line, STD-
dotted line.



This  BIAS  problem  was  investigated  for  a  period  of  February  2010  until  May  2011.  Monthly 
verification was preformed for the selected period and the results showed that compared to OPER for 
months from February till May (2010) or January till April (2011), T2m and RH2m scores are better for 
ASSIM (both bias and RMSE), for June till  August (2010) or in May (2011) T2m and RH2m (in 
afternoon hours) scores are worse for ASSIM (in BIAS and sometimes RMSE) while for the other parts 
of year scores are rather neutral for T2m BIAS and a bit better for BIAS of ASSIM RH2m. It seems 
that there is seasonal evolution of T2m and RH2m scores, in “spring” and “winter” ASSIM BIAS is  
smaller, in “summer” ASSIM T2m BIAS is bigger, while for “autumn” results are rather neutral or 
mixed compared to OPER. 

Another thing can be noticed for T2m BIAS scores for June-August (Figure 1) and May 2011 (not 
shown). It seem that there is slope of BIAS curve in a way that afternoon bias is reduced with forecast 
range and it can be noticed both in ASSIM and OPER. For morning hours this BIAS slope is a bit 
smaller. Also in this months daily amplitude of T2m is bigger for OPER. 

What are the reasons for such behavior? As the problem arose in “summer” period, one of the possible 
reasons could be a bad initialization of the soil moisture. During a “summer” period there is strong 
solar  forcing which increases  surface sensible  and latent  heat  fluxes and there soil  moisture plays 
important role. To test this the experiment where SURFACE ANALYSIS in assimilation cycle was 
replaced by simply copying land surface fields form ARPEGE analysis was performed. This was done 
for June 2010. When production from such cycle is performed and compared with OPER, verification 
results were very similar (Figure 2). From this simple experiment it can be noticed that most probably 
bad soil initialization is responsible for bad verification scores in summer period. 

Figure 2: VERAL scores for production from ASSIM (red) and OPER (black) for  
period June-August 2010. Scores are computed every six hours and averaged over  
all SYNOP and TEMP stations in the ALADIN domain. Results show BIAS, root  
mean square error (RMSE) and standard deviation (STD) against forecast hour.  
BIAS-dashed lines, RMSE-full line, STD-dotted line.



SWI evolution

SWI provides fractional value between wilting point and field capacity and it is defined as: 

SWI =
W p−W wilt

W fc−W wilt

where Wfc  represents field capacity, Wwilt is wilting point and Wp  is total layer reservoir. Evolution of 
SWI in assimilation cycle and in operational configuration is shown on Figure 3. In operational setup, 
updated  water  content  comes  from ARPEGE analysis  interpolated  to  ALADIN HR grid,  while  in 
assimilation cycle CANARI analysis is performed in order to update surface fields. As it can be seen 
SWI for analysis and background is quite similar all the time, while it can be much different when 
comparing analysis or background with OPER. 

During April mean SWI of analysis is much lower than mean SWI of OPER. This is beneficial for 
verification scores  of  T2m and RH2m where both RMSE and BIAS have much lower  values  for 
ASSIM than for OPER. As time progresses mean SWI of analysis is growing until mid of May where it  
settles at values around 0.6. At same time SWI of oper is decreasing and at beginning of May mean 
SWI of oper has values similar to analysis. After mid May SWI for both analysis and oper starts to 
decrease but this decrees is more pronounced for oper. After that SWI of oper stays below SWI of 
analysis during whole period shown. This smaller mean SWI is beneficial for OPER verification scores 
in June and July. At the same figure mean domain SWI increments at 00 and 12 UTC are shown.  
Increments for 06 and 18 UTC are not shown because in our assimilation setup guess and analysis 
(after DFI) for those times are not stored. Also at some dates analysis was not available so increments 
were not plotted.  Looking at  whole period it  can be noticed that there is  clear separation between 
increments at 00 and 12 UTC, where positive increments are at 00 UTC and negative increments are at  
12  UTC.  This  is  not  so  apparent  for  April  but  as  “summer”  time begins  this  behavior  gets  more 
pronounced. In June and July increments at 00UTC tend to get higher values than i April or May. This 
separation of increments is result of known model bias, cold bias at afternoon hours and warm bias at 
night time hours. 



In 2011. similar pattern can be noticed (Figure 4). Again oper has much higher values (almost at field 
capacity) of SWI at March, and as “summer” time starts values of mean SWI for oper are decreeing 
while for analysis are increasing. Result is that at the end of May oper has smaller values of mean SWI 
than analysis. 

Figure 3: Top row: Evolution of mean domain SWI over land from April 2010 until July  
2010 for background (6 hour forecast from assimilation cycle), analysis (after CANARI  
and 3dVar analysis), oper (ARPEGE analysis interpolated to ALADIN HZ grid). Values  
are shown every 6 hours for background (blue) and every 12 hours for oper (black) and 
analysis (red). Bottom row: Mean SWI incremenst at 00UTC (red) an at 12UTC(black). 



Figure 4: First row: Mean domain 6h accumulated precipitation over land taken from 6h forecast  
inside assimilation cycle. Second row: Mean domain SWI over land. Third row: Mean domain SWI  
increments over land. Left are plots for March 2011 and right plots for May 2011.



CANARI tuning of error statistics

Tuning of error statistics was performed using observation minus guess (O-G) departures of 6h forecast 
in assimilation cycle. Departures were calculated for ~1 year of data (01.12.2010.-06.12.2011.). 
In CANARI OI for analysis of 2m temperature and relative humidity background correlations are 
modeled on following way:
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According to this observation minus guess (O-G) are computed for all SYNOP stations in ALADIN-
HR domain, and they can be used to calculate σ

G
⋅ρij

G .  Comparing (1) and (2) one can see that in 

order  to  evaluate  how  f(r) should  look  like,  result  from  (4)  should  be  divided  by  (σ
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2 .  In 
theoretical assumption and with  f(r) given as (2) one can expect that background covariances would 
decrease with mutual station distance and therefore (σ

G
)

2 for dividing in empirical calculation could 
be approximated with covariance of first class (e.g. smallest mutual distance between stations) or a bit 
higher.  But in empirical  calculation results  show that covariance of stations having greater  mutual 
distance can be higher than covariance of stations having mutual smaller distance. Fortunately, this was 
case only for few datasets. Nevertheless, in order to scale covariances approach where  (σ
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maximum covariance for given dataset was chosen.



a) First approach

On Figure 1 and Figure 2 background covariances calculated from O-G statistics are shown. Statistic 
were calculated for every season (winter, spring, summer and autumn) and for every analysis time (00, 
06, 12, 18 UTC). Some theoretical functions with slightly changed parameters in (2) are shown. 

Figure 5: T2m covariances with respect to station distance and for different seasons and analysis time.  
With ro* different theoretical functions are denoted.



RH2m T2m

ro3-60 ro2-80 ro1-80 ro1-150 ro3-80 ro1-60 ro1-80

winter00 spring18 spring00 summer00 winter00 autmn00 autmn12

winter06 summer18 spring12 summer12 winter06 autmn06 summer12

winter18 autmn00 winter12 autmn12 winter18 autmn18 summer18

spring06 winter12 spring00

autmn06 spring18 spring12

summer06 spring06 summer06

autmn18 summer06
Table 1: Results from different datasets are subjectively grouped in accordance to best fit on some 
theoretical correlation function.

Figure 6: RH2m covariances with respect to station distance  and for different seasons and analysis  
time. With ro* different theoretical functions are denoted.



Functions used:

ro1=e(−0.5∗r /d )

ro2=e(−0.75∗r /d )

ro3=e(−r /d )

Horizontal lengthscale (d) varied between 60km, 80km and 150 km. 

In Table 1 results from different datasets are subjectively grouped in accordance to best fit on some 
theoretical correlation function. According to this table some compromising solution would look like:

• 00: ro1 with d=80km 
• 06: ro3 with d=60km
• 12: ro1 with d=80km or bigger d
• 18: ro1 with d=80km 

If one would look by seasons:
• spring: 00 – ro1-80

06 – ro3-60 or ro1-60
12 – ro1-60 or ro1-80
18 – ro2-80 or ro1-60 (similar)

• summer: 00 – ro1-80 or bigger d
06 – ro1-60 or ro3-60
12 – ro1-80 or bigger d
18 – ro1-80 or ro2-80

• autumn: 00 – ro1-60
06 – ro1-60 or ro3-60
12 – ro1-80 or bigger d
18 – ro1-60 or ro3-80

• winter: 00 – ro3-60
06 – ro3-60
12 – ro1-60 or ro1-80
18 – ro3-60

Finally all above results are summarized in following table: 
ro1-80 Winter Spring Summer Autumn

r01-60 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18

r03-60

Table 2: Summary. 



b) Second approach

In second approach,  covariances are not normalized with variance of guess (Figure 7 and Figure 8). Fit 
with theoretical function was done by changing background variance and horizontal length-scale (d). 

Figure 7: T2m covariances with respect to station distance and for different seasons and analysis time.  
With ro* different theoretical functions are denoted. 



Time 00 12 06 and 18

Variable T2m RH2m T2m RH2m T2m RH2m

D [km] 90 90 120 120 60 60

Standard deviation 1.7 0.1 1.8 0.135 1.6 0.09
Table 3: Summary for second approach. 

c) Third approach

Before calculating covariances mean difference (in given period) between model forecast and 
observation for every station separately was removed.
This is still not done. 

Figure 8: RH2m covariances with respect to station distance and for different seasons and analysis  
time.



Tests

1) In first test few parameters in CANARI namelist will be changed:

1. horizontal length scale (REF_A_H2, REF_A_T2) according to Table 3

2. standard deviation (REF_S_H2, REF_S_T2) according to Table 3

3. maximum distance for horizontal selection (QDSTRA) was changed from original settings 
of 1000km to 150km

4. maximum number of observations per quadrant (NMXGQA) was reduced from 50 to 7

5. smoothing radius (RA_SM_WP) was changed from 5km to 8km

Reasons for changing 3. is that on this way we avoid influence of costal stations on model grid-points 
inland. Similar reason is for changing parameter 4.. Smoothing radius was changed to be the same as 
horizontal model grid spacing. 

Testing period will be May 2011, where first 20 day will be used as worm up period for cycling and last 
10 days will be used for production and verification.



Appendix - Description of assimilation setup and operational setup

Description of tags used in text:

• background - 6 hour forecast from assimilation cycle

• analysis - initial file for production from assimilation cycle, thus after CANARI, 3DVar and 
DFI

• oper - initial file for production from assimilation cycle obtained by interpolating ARPEGE to 
ALADIN grid and after DFI

• ASSIM - production from assimilation cycle

• OPER - production from operational setup

Operational ALADIN HR domain is shown at Figure 7. Some details on ALADIN HR:

• horizontal resolution 8x8 km

• 37 vertical levels

• LBC: global model ARPEGE, coupling frequency 3 hours

• 229x205 (240x216) grid points 

• AL32T3: ALARO0-3MT, old radiation scheme, DFI 

• 72 hours forecast, 1-3 hourly output

Assimilation setup is shown at Figure [fig:Scheme-of-assimilation]. The assimilation cycle consists of 
several steps. In the first step (BLENDSUR), a 6 h forecast from a previous assimilation cycle is taken, 
and the sea surface temperature SST is replaced with the SST coming from the long cut off analysis of 
the ARPÉGE model (the ARPÉGE model is run later, whereas in the assimilation, all available data are 
used). This is done because SST is not locally assimilated. In the second step, surface analysis is 
performed, during which temperature and relative humidity at 2 m are used for updating land surface 

Figure 9: ALADIN HR domain.



variables. In next step, the upper airfields are analyzed, and the output is used for initiating the 6 hour 
forecast at the end of the assimilation cycle. The assimilation cycle is run with a time delay sufficient to 
enable the use of the ARPÉGE long cut off coupling files as the boundary conditions for the short range 
(6 h) forecast. Because the timing of assimilation cycle and production is quasi-operational, long cut 
off ARPÉGE files and long cut off data is not available for production from the assimilation cycle; 
thus, short cut off ARPÉGE files and data are used. Steps in production are the same as in the cycle; the 
only difference is that, at the end, the 72 h forecast is done. A digital filter initialization (DFI) is used 
for both the cycle and production before the integration of the model. 
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