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1. Development of a SURFEX EKF for ALARO and comparison of the offline and coupled
version with the OI analysis.
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2. Preliminary results on combining SURFEX EKF with 3dVar atmospheric assimilation.
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3. A feasibility study of using a Short Time Augmented Extended Kalman Filter (STAEKF)
for Soil Analysis.




e The new land surface scheme of ALARO: SURFEX
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@ Both ALADIN and ARPEGE relied on the ISBA scheme for the parameterization of the surface processes.
(Noilhan and Planton 1989 ; Mahfouf et al. 1995 ; Noilhan and Mahfouf 1996)

@ In 2000 Valéry Masson developed a scheme for simulation the interactions with urban areas and this scheme
becomes part of the meso-NH surface model. (TEB, Masson 2000)

@ During the last decade, the surface scheme (ISBA+TEB) has been externalized from the atmospheric part of
the meso-NH model following the approach of ( Best et al. 2004)

@ This led to the creation of the SURFEX scheme (SURface Externalisée) where the characteristics of the
surface are specified by the ECOCLIMAP database (Masson et al. 2003)

@ Additionally, more schemes has been added to SURFEX for: Sea and oceans (prescribed SST, ECUME, 1-D
ocean model), lakes (prescribed ST, FLAKE), Surface boundary layer scheme CANOPY
(Masson and Seity 2009; Hamdi and Masson 2008)...etc.




SURFEX | gurfex

One important feature of the externalized surface:

each grid cell is divided into 4 elementary units called tiles according to the
fraction of covers in the grid cell

: permanent snow

- deciduous forest

- conifer forest
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SURFEX

surfex with alaro

Surfex output as surface boundary conditions for atmospheric radiation

and turbulent scheme.

* albedo
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SURFEX

operational scores with surfex

\ ALARO+FMR+SURFEX Vs ALARO+ACRANEB run over Belgium
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2m Temperature scores { January 2010 ): UCCLE-UKKEL
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2m Temperature scores ( July 2010 ): UCCLE-UKKEL
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Table 2. the average daytime/nightime scores for the flathigh topography and coastal synoptic stations, sign

(+) means improvement, sign (0) means neutral effect, and sign (-) means degradation of the scores.

Winternigne Winterpa, Summeryigne Summerpy

Temperature at 2m
Flat

High

Coast

Wind speed at 10m
Flat
High

Coast

Wind direction at 10m
Flat
High

Coast

Relative humidity at 2m
Flat




Surface data assimilation
SURFEX EKF for ALARO

= Optimum Interpolation (Ol)

= Coefficients are derived using simple assumptions
" Extended Kalman Filter (EKF)

= dynamical coefficients
- Formulation: x*=x"+ BH' (HBH" +R)  [y* — H(x})]

'H : the observation operator

Includes a model propagation

H: the Jacobian matrix of the observation operator:
Ay,

H =
- (}-‘E{.

H is calculated by a finite difference approach:

- }f‘g'(.'i'. + éxj-) _J"'e'(.'i}
) bx;
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SURFEX_EKF for ALARO gy ianded Kalman Filter

" Finite difference approach:

3 vi(x + éxj-j — vi(x)

ij —
d Ox;

= Calculation of i(x + ) and yi(x):
" Perturb a component X, of the control vector x
. = Perform run with the perturbed surface field to calculate corresponding Vi
Offline: surface scheme decoupled from atmospheric model
the forcing is taken from the lowest model level
Coupled: surface scheme coupled to atmospheric model

Interaction is possible between atmosphere and surface
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SURFEX_EKEF for ALARO

Offline VS. Coupled EKF

In Balsamo et al. (2007,JH), the offline approach is compared to the coupled
approach for a single day during the summer with the GEM model. The gain
components are found to be smaller for the offline approach but with similar
patterns as the coupled approach.

_ " |n Balsamo et al (2004,QJRMYS) it is mentioned that for coupled experiments
* the choice of the perturbation size is important. Small perturbations can lead to
a noisy H matrix and inaccurate corrections.

~ * This presentation:
— Implementation of offline and coupled SURFEX EKF for ALADIN
— Comparison between offline and coupled EKF: jacobians, gain, increments

— Comparison of forecast scores of EKF, Ol and runs without assimilation

LACE DAWD, 18-20 June 2012 (9/43)
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SURFEX_EKEF for ALARO

Experimental Set-up
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SURFEX_EKEF for ALARO

Experimental Set-up

" Prognostic variables:

= Superficial water content (wg1l)
" Root zone water content (wg2)
= Surface temperature (Tgl)

" Deep soil temperature (Tg2)

* * Observations:

. = Screen level temperature (T2m)

- = Screen level relative humidity (RH2m)

=  Additional information:

= |LBC data from Aladin France

= Assimilation interval T = 6 hours, with assimilation at 00,06,12,18 UTC

" Forecasts with surfex + alaro and inline fullpos (interval 1 hour)
= Background error covariance matrix B is kept constant (WG set to 0.1, TG set to 2 K)

Error covariance matrix R: T2m set to 1K, RH2m set to 10%




SURFEX_EKEF for ALARO

Experimental Set-up

.‘.‘_“ :

Experiments:

" Free run: (no assimilation)
Surface field from 6h forecast of previous run
= Open loop: (no assimilation)

Surface is interpolated from Arpege analysis

= Surface Assimilation runs:
Optimum Interpolation
EKF with offline jacobian calculation
EKF with coupled jacobian calculation

— Surface guess for assimilation is taken from 6h forecast of previous run
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EKF offline
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Jacobian
SURFEX_EKEF for ALARO

EKF offline EKF coupled

T2m-WG2 jacobians for 02 July 2010 1200 T2m-WG2 jacobians for 02 July 2010 1200
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SURFEX_EKEF for ALARO

WG2 increments for July 2010

WG2 increments for July 2010
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Figure 24: Cummulative increments for July 2010, WG2. The incrementscale for OI is two times smaller
than for both EKF.
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SURFEX_EKEF for ALARO

TG2 increments for July 2010

TG2 increments for July 2010

TG2 increments for July 2010
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Figure 26: Cummulative increments for July 2010, TG2. The incrementscale for OI is three times
than for both EKF.
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SURFEX_EKEF for ALARO

Increments (TG)

Average increment value for TG2 (JULY 2010)
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SURFEX_EKEF for ALARO Increments (WG)

Average increment value for WG2 (JULY 2010)
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(28.4) Evolution of the WG increments averaged over the domain for July 2010

Figure 28: Evolution of the increments of the soil prognostic variables




SURFEX_EKEF for ALARO

Time evolution (WG2)

Average value for WG2 (JULY 2010)
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Figure 32: Evolution of the WG2 values averaged over the domain for July 2010
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SURFEX_EKEF for ALARO
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SURFEX_EKF + 3DVAR

FRECEE Tor ATLARO and co
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Simulation Set-up

SURFEX_EKF + 3DVAR

—— -

Experiments:

" Free run: (no assimilation)
Atmospheric fields from ARPEGE analysis. Surface field from 6h forecast of previous run
= Open loop: (no assimilation)

Atmospheric fields and surface fields are interpolated from Arpege analysis

= EKF with surface assimilation.

= 3DVAR With atmospheric assimilation using only conventional observations (no satellite, no
radar)

= 3DVAR+EKEF surface assimilation is done before atmospheric assimilation.




Simulation Set-up

SURFEX_EKF + 3DVAR
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Scores

SURFEX_EKF + 3DVAR

2m Temperature RMSE (01-31 July 2010) run 0
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STAEKTF for soil analysis

%
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3. A feasibility study of using a Short Time Augmented Extended Kalman Filter (STAEKF)
for Soil Analysis.
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STAEKTF for soil analysis
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@ Recently, Carrassi and Vannitsem (2011, QJRMYS) introduced an alternative formulation of
the EKF where the uncertain model parameters are estimated along with the system state
variables.

@ The algorithm, Short Time Augmented Extended Kalman Filter (STAEKF), uses a
deterministic formulation for the model error dynamics (Nicolis, 2003, JAS).

@ The same formulation has been used for the treatement of the error arising from the
unresolved scales (Carrassi and Vannitsem, 2011, IJBC) and in the context of variational
assimilation (Carrassi and Vannitsem, 2010, MWR).

® We undertake here a set of numerical twin experiments designed to test the STAEKF in
estimating three land surface parameters: LAI, the albedo, and the minimum stomatal
resistance RSmin.

@ Assimilation of 2m temperature and relative humidity using an offline version of ISBA.




STAEKTF for soil analysis

-

@ The two-layers version of the land surface model ISBA.

The model equations read:

a7, 2
— Cr(R, —H ~LE) - (T, - Ty)
T

Bt
8T, 1
i

- o 'r( 2)

Sw y C

s B pud; T B~ )
Bws 1 Cs
9 pudy Ty B Bur) = g pmaalO fun — e

@ The model is available within a surface externalized platform (SLDAS, Mahfouf 2007).

@ The state vector, X ;T T W W ) and the equation can be formally written as a
dynamical system, _ g X, )\

@ The vector A is taken to represent the set of model parameters.

-
’ LACE DAWD, 18-20 June 2012 (32/43)




STAEKTF for soil analysis

The forecast model, is augmented with P model parameters:

Mx*
7 = = Fz' = , (1)

- Y FAx

© 7= (x,}) is the augmented state vector. The augmented dynamical system F includes

the dynamical model for the system’s state, M, and a dynamical model for the parameters
F*. In the absence of additional information, a persistence model for F* is often assumed

s0 that F* =1 and ’\ffm = At,; the same choice has been adopted here.

kS
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STAEKTF for soil analysis

The forecast/analysis error covariance matrix, P{’a, for the augmented system reads:

IO (2)

=z
fal  ofa
PmA P)t.

‘_ | where the I x I matrix PL® is the error covariance of the state estimate x/ 4 P{’a 1s the

P x P parametric error covariance pnd Pi; the I x P error correlation matrix between the

state vector, x, and the vector of parameters A| These correlations are essential for the

estimation of the parameters. In general one does not have access to a direct measurement

of the parameters, and information are only obtained through ohservations of the system’s

state.
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- T .
. . ¥

The forecast error propagation in the STAEKF is given by P! = CP?CT, with C

being the STAEKF forward operator defined as: The short-time truncation of
— the dynamics
g
9,7
C= (3)
0 Ip

where Ip is the P x P identity matrix. Equation (3) embeds the key feature of the

STAEKF: the presence of the term %| »aT allows for accounting for the contribution of

the parametric error to the forecast error as well as to the error correlation between model

state and parameters.
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An augmented observation operator is introduced, H, = [H 0] with H as for the

standard EKF. Its linearization, H, is now a M x (I + P) matrix in which the last

. P columns contain zeros. The augmented state and covariance update complete the
algorithm and are equivalent to those of the Kb except that they refer now to the
augmented system, and the gain matrix has dimension (I + P) x M (see Carrassi and

Vannitsem, 2011, for details).
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Experimental Set-up

@ Observation system simulation experiments (OSSE).

@ The forcing consist of 1-hourly air temperature, specific humidity, atmospheric pressure, incoming

global radiation, incoming long-wave radiation, precipitation rate and wind speed relative to the ten
summers in the decade 1990-1999 extract from ECMWF Re-analysis ERA40.

@ ISBA is run in one offline single column mode for a 90 day period.
@ The simulated observations are T2m and RH2m at 00, 06, 12 and 18 UTC.

~ @ The initial Pf (B) and Pm (Q) required by the EKF, are taken from Mahfouf (2007).
diag(R)=(1,10-2) diag(Pf)=(1,1,10-2,10-2) diag(Pm)=(25.10-2,25.10-2,4.10-4,4.10-4)

@ Parametric errors are introduced by perturbing either alternatively or simultaneously, the Leaf
Area Index, LAI, the albedo, and the minimum stomatal resistance.

——
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- Experimental Set-up
h :

@ For each summer in the period 1990 - 1999, a reference trajectory is generated by integrating the
model with LAI = 1 m2 /m2, albedo = 0.2, and Rsmin=94 s/m.

- @ Around each of these trajectories, Gaussian samples of 100 initial conditions and uncertain
a parameters are used to initialize the assimilation cycles.

@ The initial conditions are sampled from a distribution with standard deviation:
(oTs, 0T2, owg,ow2)=(5,5,1,1)

\ @ LAl albedo, and RSmin are sampled with standard deviations:
o LAI = 0.5 calbedo = 0.1 cRSmin = 50

@ PLAI=1 Palbedo=10-4 PRSmin=5000 in the STAEKEF, while Pax is taken as in the EKF; Px,A is
initially set to zero.

oo R
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LAI and Albedo
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¢ o

@ Continuing the evaluation of the STAEKF, a scientific paper is submitted: Short Time
Augmented Extended Kalman Filter for Soil Analysis: A feasibility study.
Carrassi A., Hamdi R., Termonia P., and Vannitsem S., 2012 ASL.

@ The STAEKTEF is able to reduce the parameter estimation errors.

ﬂ @ The accuracy of these estimates is inherently related to the type of parameter to be
B estimated.

@ The model sensitivity to the specific parameter and the accuracy of the short-time
approximation in the STAEKF.

@ The rate of error convergence in the STAEKEF is related to the initial parametric error

variance.
@ Implementing the STAEKF in SURFEX and study its behaviour within ALARO.
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