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Introduction

The study of radial winds using radar data has become increasingly vital for improvingegmort
weather forecasts, particularly within higisolution numerical weather prediction (NWP) models

like ALADIN. Radial wind data provide direct measurementsvinid speed and direction along the
radar beam, offering valuable insights into atmospheric dynamics. However, the integration of these
data into operational models poses significant challenges due to the variability in data quality,
coverage, and consistnacross different regions.

EUMETNET Operational Program on the Exchange of Weather Radar Information (OPERA)
produce among other products the quatitytrolled volume data for NWP assimilation. An upgrade

of its data centre (OIFS) to the new production line (NIMBUS) is planned04 (EUMETNET
2024).

Wefocused on addressing these challenges by comparing and validating two key radar datasets: OIFS
and the newly introduced NIMBUS. The primary aim was to assess the potettied®tlatasets for
improving the accuracy of weather forecasts through enhanced data assimilation techniques. This
involved the application of spatial filtering methods to refine the data quality and the exploration of
passive assimilation strategies toarporate these refined datasets into the ALADIN model.

1. Basicoverview of OPERA datasets:
OIFS & NIMBUS

Our initial focus was to identify the differences between the provided OIFS and NIMBUS datasets.
We aimed to compare the content of the data in the respective datasets from one randomly chossed
term (01.04.2024). Firstly, we identified missing radar statiwhich were missing in OIFERAJA,

ISBJQ ISSKA, LVRIX) or NIMBUS (IEDUB, PLPAS RSFRQ datasetsThe Tablel shows differences

in the number of radars recorded in OIFS and NIMBUS databases for each country as of April 1,
2024.

Country OIFS NIMBUS Country OIFS NIMBUS
Belgium (be) 3 3 Malta (mt) 1 1
Czech (cz2) 2 2 Netherlands (nl) 2 2
Croatia (hr) 5 5 Norway (no) 10 10
Denmark (dk) 4 4 Poland (pl) 7 6
Estonia (ee) 2 2 Portugal (pt) 4 4
Finland (fi) 11 11 Serbia (rs) 1 0
France (fr) 21 22 Slovakia (sk) 4 4
Germany (de) 17 17 Slovenia (si) 2 2
Hungary (hu) 5 5 Spain (es) 13 13
Iceland (is) 2 4 Sweden (se) 12 12
Ireland (ie) 1 0 Switzerland (ch) 5 5
Latvia (Iv) 0 1 UK (uk) 15 15

Tablel Comparison of radanumbers in OIFS and NIMBUS databases

Subsequently, we did not focus on ardgpth comparison of all the attributes of the datasets, but
only on the occurrence of the radial wind parameter (VRAD)thadassociated Nyquist velocity
value More information about general comparison of OIFS aldBUS radar data areiNe gt i a k
(2024)
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Available Nyquist velocity (NI)

Nyquist velocity, named after Harry Nyquist, is a key concept in Doppler radar systems. It represents
the maximum unambiguous velocity ththe radar can measuvgthout aliasing. Aliasing occurs

when higher velocities appear to be lower due to the limitations of the radar samplinthiste.
happens because the radar samples the Doppler shift at discrete intervals determined by the pulse
repetition frequency (PRF).

In radar meteorology and aviation (such agsamotecontrol), accurately measuring velocities is
crucial for tracking objects and understanding weather patterns. The Nyquist velocity helps ensure
that these measurements are reliable and accurate, preventing errors that could lead to incorrect
interpretation®f the radar datéSireci 2005) The Nyquist velocity ll) is determined by the radar's
PRF. The relationship can be expressg8rown and Wood (2007)

50 0 Y8

where:
T i s the wavelength of the radar signal
T PREF is the pulse repetition frequency, i.e., the rate at which radar pulses are transmitted.

The factor of 4 comes froravoiding aliasing in both positive and negative velocity directions,
effectively doubling the required sampling rate for accurate velocity measureimgmactice,
choosing an appropriate Nyquist velocity depends on the specific requirements of the radar
application. For instance, in meteorology, a higher Nyquist velocity is beneficial for observing fast
moving weather phenomena, while a lower Nyquidbeiey might be more suitable for detecting
slowermoving objects.

In the next step, data from NIMBUS were analysed and used. bothparisorof countries based

on the condition of the Nyquist velocity value is shown with colour co@igure 1.1). Green
represents data from countries whose datasets contained only NI values higher than 30 m/s. Red
represents countries with values lower than 30 m/s. Yellow illustrates countries with both values
higher and lower than 30 m/Sountries marked igrey are missingeither thevalue of NI(Czech
Republig orthe entiredataset (Ireland, Romania, Serbia)

i/ «
Figure 1.1 Colour code map afelectedeuropean countries based on thendiion of the Nyquist velocity
value.
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Summary of data from selected countries

Latl ogoviBe{206v0) (2024) 0 = not fing

OIFS OIFS NIMBUS
Belgium (be) available <7> <7> <7> 0 0
Czech (cz) available 0 0 0 VRADH+DBZH+TH 0
Croatia (hr) available 17 <6,8,17> <6,8,17> VRADH+DBZH+TH 0

VRADH+DBZH+TH+LDR
+RHOHV+WRADH+PHDR VRADH+DBZH+TH+LDR+RHO

Denmark (dk) available <8,47> <8,47> <8,47> +ZDR HV+WRADH+PHDP+ZDR
Estonia (ee) available <8,13> <8,13> <8,13> VRADH+DBZH+TH 0
Finland (fi) available 8 <8> <8> VRADH+DBZH+TH 0
France (fr) available <59,62> <59> <59> VRADH+DBZH+TH VRADH+DBZH+TH
Germany (de) available <32> <32> <32> VRADH+DBZH+TH VRADH+DBZH+TH
Hungary (hu) available <8,47> <8,47> <8,47> VRADH+DBZH VRADH+DBZH
Iceland (is) 0 0 <30> <30> 0 0
Ireland (ie) 0 0 <6> 0 0 0
Latvia available 0 0 <7> 0 0
Malta (mt) 0 0 0 0 0 0
Netherlands (nl) | available <6,80> <6,32,48> <6,32,48> VRADH+DBZH+TH VRADH+DBZH+TH
Norway (no) available <48,111> <32,128> <32,128> VRADH+DBZH+TH VRADH+DBZH+TH
Poland (pl) 0 7 <7,30,48> <7,30,48> VRADH VRADH
Portugal (pt) available <6,50> <6,8,16,60> <6> VRADH+DBZH+TH 0
Romania (ro) 0 8 0 0 0 0
Serbia (rs) 0 0 0 0 0 0
Slovakia (sk) available <40,64> <40,64> <40,64> VRADH+DBZH+TH VRADH+DBZH+TH
Slovenia (si) available <8,41> <8,40> <8,40> VRADH+DBZH+TH VRADH+DBZH+TH
Spain (es) available <3,48> <3,48> <3,48> VRADH+DBZH VRADH+DBZH
Sweden (se) available <24,40> <24,40> <24,40> VRADH+DBZH+TH VRADH+DBZH+TH
Switzerland (ch) | available <8,12> <8,12> <8,12> VRADH+DBZH+TH 0
UK (uk) available <4,48> <4,48> <4,48> VRAD VRAD

An overview of the available variables and the range of NI for the countries selected for this study

from the randomly selected date of 1 April 2024 at 10 UTC is giv@alne?2.

20pW (L 21IRO)

Table2 Data overview of RC LACE countries with available radial winds, range of NI and quantities with

VRAD. For comparisartherange of NI fronthey e a r
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2. Preprocessing byHOOF

The HOOF Python tool was used for processing OPERA data. This tool ensures the homogenization
of HDF5 data from OPERA to make them usable in BATOR. More information can be found in the
documentation (HOOF manual and HOQ®/&nual). Initially, we intended to use HOOF2; however,

due to persistent issues with library versions in Python, it was not possible to use HOOF2. Initially,
we compared datasets, but later the work focused exclusively on NIMBUS data.

Since the new NI MBUS data contain a new qual.
mandatorygain & offsefattributeswe used a workaround proposed by Alea overcome thisShe
proposed checking if the quality flag should be present in the dataset, and if so, copgaig te

offset from another group within the dataset and appending it to the new quality flag. This
modification did not affect further calculations, as it only involved checking for the presence of the
attribute, without futher processing.

After processing the data with HOOFv1.9, warnings and errors were observed:

Warning: A TH quantity from /dataset9/datal has no matching DBZ, omitting the TH dataset
DBZ quantity in /dataset6/datal does not have the required ggaditps.

Cannot sort file into measurements (probably no DBZ quantity is found)

Attribute /dataset12/how/NI is required, but not foamgwhere.

=A =4 =4 =

We selected datasets from the radars of Germany, Denmark, France, Hungary, the Netherlands,
Poland, Slovenia, Slovakia, and the United Kingdom. The selection was based on attributes in the
datasets(radial winds VRAD and Nyquist velocityvere mandatofly and considering the
computational domaiof ALADIN/CHMI. Th e Mi chal Negtiakds resul't
consistent with our own (Negtiak, 2024).

3. Bator

BATOR is a preprocessing tool used in the ALADIN Numerical Weather Prediction (NWP) model.
Its primary function is to ingest and preprocess observational data, including radar, satellite, and in
situ measurements, to be used in the data assimilation sySADIN.

Key Functions oBATOR (WebpageHIRLAM.github.io):

1 Data Ingestion: BATOR reads various observational data formats and converts them into a
format that can be used by the ALADIN data assimilation system.

1 Quality Control: The tool appliesarious quality control measures to ensure that the ingested
data is accurate and reliable. This includes checks for consistency, validity, and redundancy.

1 Spatial and Temporal Matching: BATOR aligns the observations spatially and temporally
with the model grid and forecast time steps, ensuring the data is correctly positioned for
assimilation.

1 Filtering and Cleaning: The software performs filtering and cleaning operations on the data
to remove noise and erroneous measurements. This step is crucial for radar data, which can
be affected by various sources of noise and clutter.
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3.1. Spatial Filtering of radial winds

One of the critical functions of BATOR when dealing with radar data is spatial filtering, which aims
to clean and smooth the data before assimilation. This is necessary to remove spurious data points
and ensure the quality of the observatiM®NTMERLE and FACCANI, 2009

Here's a breakdown of the proce$she spatial filtering process in the BATOR system, specifically
for Doppler wind data (denoted as 'DORWhe following section§3.1.1i 3.1.3) are interpretations
of the source codsubroutinegbator _decodhdf5 mod.F90ator util_mod.F9p:

Initial Cleaning:

The bator_radar_wind_cleanesubroutine is called witfilter set to.TRUE. to perform an initial
cleaning. This involvesinalysingthe elevation data and identifying bad pixels or problematic
elevations.

Filter Application:
If the data is not empty (i.e., there is valid wind data)ptter_filter_radarsubroutine is applied to
filter the data based on predefined criteria.

Final Cleaning:
A second call tdbator_radar_wind_cleanewith filter set to.FALSE.is made to further clean the
data at the pixel level.

3.1.1. Bator_radar_wind_cleaner (Wind cleaner |1 Elevation check)

The subroutinéator_radar_wind_cleaners responsible for eliminating bad pixels and handling
el evations with frequency capture problems (C
operations:

1. Initialization:

o The subroutine initializes necessary variables and allocates memory for arrays that
will hold the data and error valuds. called with the filter parameter set.fRUE.
for initial cleaning at the elevation level.

2. Data Extraction:

o It extracts radar data into a 2D aridfABand a binary maskIBWAGto indicate
valid wind observations.

o It counts the initial number of valid observations and prints this information.

3. Median Filtering:

o A median filtering process is applied to smooth the data and remove outliers. This
involves calculating the median error and value within a specified window around
each data point.

o For each data point in the radar grid, the subroutine calculates the median error and
value within a specified window (e.g., 5x5 grid) around the point.

o Errors are computed as the difference between the central point and its neighbours,
and these errors are sorted to find the median.

o The median errofdEAN_ERR and value MEAN_VAL are computed. If there are
enough neighbouring points, these values are used to evaluate the quality of the central
data point.
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4. Threshold Checking:
o The subroutine checks if the absolute difference between the observation and the

median value exceeds a threshold. If it does, the data point is either removed or
adjusted based on the filtering mode (elevation or pixel).
5. Final Observation Count:
o The final number of valid observations is counted and printed, and if the ratio of
remaining observations is too low, the entire elevation is rejected.

3.1.2. Bator_filter_radar (Median Filter)

The bator_filter_radarsubroutine performs a median filter on the Doppler radial velocity data
from radarobservations. Here is a stbg-step explanation:

1. Data Preparation:
o Loop through the radar data to populs@WAG andPTAB_FILTRE
o Depending on the radar variabte/dr), set the appropriate offs@off).
2. Median Filtering:
o For each pixel, identify a neighborhood window of siZeX21) x (2DY+1).
o Count the valid data points within this window.
o If the number of valid points exceeds the threshGIAEFMEDIAN, compute the
median:
A Sort the values in the window.
A Find the median value and assign iP(BAB_FILTRE
o If not enough valid points are found, mark the pixel as invRIABSQO.
3. Update Radar Data:
o Loop through the data again to update the original radar data ziweag(with the
filtered values.
o Adjust the quality flag and observation courtef) accordingly.

3.1.3. Bator_radar_wind_cleaner (Wind cleaner Il i Pixel check)

After median filtering, the cleaning process ensures that any remaining noise and errors are addressed.
Here is how the cleaning process works in BATOR:

1. Pixel-Level Cleaning:
o The subroutindator_radar_wind_cleaneis called again with filter set t&-ALSE.
to perform detailed cleaning at the pixel level.
o This step focuses on individual data points that may still contain errors after the
medianfiltering.
2. Threshold Application:
o For each data point, if the difference between the observation and the median value
exceeds a higher threshold (e.g., 10 m/s), the data point is either removed or adjusted.
o If the data point is an outlier, it may be replaced with the median value of its
neighbours
3. Error Correction:
o Additional checks are performed to identify and correct significant errors. For
instance, if the error between a data point angeitghboursexceeds 10 m/s, the point
is flagged and corrected.
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4. Final Observation Count:
o The final number of valid observations is counted and compared to the initial count.
If too few observations remain (e.g., less than 15% of the original data), the entire
elevation might be rejected.
5. Elevation Rejection:
o If an elevation contains too many errors or too few valid observations, it is rejected,
and a message is printed indicating the rejection.

We selected two relatively random dates for our study: one during which we knew the atmospheric
conditions were relatively calm (09.04.2024 at 11 UTC), and another during which a frontal system
was passing through (01.04.2024 at 20 UTC). The data fordiae=ewere recorded from the Slovak
radar Mall Javorn?2k. This selection is releva
filter subroutines, as it allows us to compare the effectiveness of these subroutines under different
atmospheric contions. By doing so, we aim to understanow individual subroutines affette

resulting observations.
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Figure 3.1 Visualisation of spatial distribution of observation after spatial filtering. Without spatial filt
output (A), only Median filter (B), Median filter + Pixel check (C), Elevation check + Pixel checkn(
wholespatial filtering = Elevation check + Median filter + Pixel check (E). Valid for randomly selecte
01.04.2024 at 20 UTC
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Figure 3.2 Visualisation of spatial distribution of observation after spatial filterikigthout spatial filterin
output @), only Median filter B), Median filter + Pixel check®), Elevation check + Pixel check (D) and wt
spatial filtering (E) Valid forrandomly selected date 09.04.2024 at 11 UTC.
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3.2. Sub-sampling

Subsampling in radar data processing is a technique used to reduce the amount of data by selecting
a subset of observations at regular intervals. This technique helps in managing data volume,
improving computational efficiency, and potentially enhancing ¢uality of the resulting data
analysis by removing redundant information.

Analysation of subroutinebator_decodhdf5_mod.F90 The ifreq is calculated as the ratio of the
sampling distanceHODIM%Samplg to the radar resolutiotHODIM%Resolutioi, rounded to the
nearest integein the basic setting, th&eq variable has a value of 5, from the above relationship.
This means that every fifth pixel is kept and used in the next calculation. Subsequently, the value of
the ifreq variable was changed to 1 and 10, which is shown in the follofignge in comparison

with the value offreq = 5.

As we mention, & tested three different sglampling intervals: 10 pixels, 5 pixels, and 1 pixel, with

each interval representing the number of pixels between sampled observations. The basic setting for
subsampling was every 5 pixels, which served as the referencefpomir comparisons. The key
metricsanalysedvere the number of observations left after-sampling and the effect on selected
observations and data counts.

1. Sub-sampling every 10" pixels
o The initial observation count was 86400.
o After subsampling, 1798 observations weetained.
o Out of these, 313 observations were selected, resulting in 4443 data points.

2. Sub-sampling every %' pixels
o The initial observation count was 86400.
o After subsampling, 7236 observations were retained.
o Out of these, 1257 observations were selected, resulting in 17617 data points.

3. Sub-sampling every 1pixel
o The initial observation count was 86400.
o After subsampling, 75464 observations were retained.
o Out of these, 25061 observations were selected, resulting in 340896 data points.

As we expected, decreasing the ssdimpling interval (i.e., reducing the number of pixels between
sampled observations) resulted in a higher number of left observations. This increment in the number
of observations naturally led to a greater volume of datagairdilable for the assimilation process.

The difference in observation counts and selected data points across the tle@® sl settings
demonstrate the trag#fs involved.

The subsampling experiment underscores the importance of balancing computational efficiency with
the need for sufficient observational data in the assimilation process. While the basic setting of
thinning every 5 pixels offers a moderate balance, thecehaii interval should be guided by the
specific requirements of the assimilation system and the computational resources available.

An open question remains whether ifreq value can be set adaptively. The amount of retained
observations significantly depends on atmospheric conditions, such as relatively calm weather or
frontal systems. The purpose of this adaptive approach would be to use more observations during
calm weatler conditions and maintain the same or a relatively smaller amount during stormy weather
(but no smaller amount than in basic set). This adaptivesanipling could potentially enhance the
efficiency and accuracyf data assimilation by dynamically adjusting to varying weather patterns.

11
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Figure 3.3 Visualisation of spatial distribution of observation after sampling every 1Dpixel (at top),
every ' pixel (in the middle) and every 1 pixel (at the bottowalid for randomly selected date 09.04.2
at 11 UTC.
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4. Passive dataassimilation experiment

The preceding chapters provided an overview of the radial wind data and the process of-their pre
processing. The next stage in the data assimilation chain is observation screening, which involves
quality control, the removal of duplicated data, and a teslue data resolution (thinning).

One way to assess the quality of new observations is to compare them with the NWP background.
Passive data assimilation experiments enable the computation of differences between observations
and model forecasts (OMG) without affecting the analysis.

A passive experiment with radar observations was conducted usisettipeversion cy46t1mpp3

at CHMI (Czech Hydrometeorological Institute) on areas covering central, southern and part of
western Europdt waslaunched for the period 01.04.2024 at 00 UTC to 15.04.2024dT C8We

runa 3hour assimilation cycle with selecteatlars. Thé&limbusdata were homogenisggs is written

in section 2.and then were read by BATOR/e used available data from edidars having NI > 30
m/sfrom the selected cotmes (numberof used radars)e (17)", "dk (4)", "fr (23)", "hu (5)",

“nl (2)", "pl (4)", "si (2)", "sk (4)", "uk ( 11)".

Firstly we checkedlifference between amount of all observations actt/e observationsf radar
doppler wind (DOW, varno = 195). Numbédrabservations are visuséd inFigures 4.1 4.3. The

plot visualizes the distribution of observations across different stations at same time periods. This
helps identify stations with sufficient data coverage for further analysis. By comparing "Active Data"
and "All Data" lines, one can assess data detapess and potentially identify gaps or
inconsistencies. Also unusual spikes or drops in observation counts might indicate pgeteretsabr
outliers that require further investigation. Analysed spikeseweferring to precipitation inthe
atmosphere. Howevesome dropsHigure4.1li FRTRA after 11 Apr,Figure4.3i PLGDA after 6

Apr) represent issues with datasets. Theessiee mostly due to missinghole datasetsr missing

clue part of datasets.

1Apr 8Apr 15Apr 1Apr 8Apr 15 Apr

1Apr 8Apr 15Apr 1Apr 8Apr 15Apr 1Apr 8Apr 15Apr
Dav
Figure 4.1 Visualization of the total and active Doppler wind observations from French radars ov:
two-week period.
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