
Regional Cooperation for
Limited Area Modeling in Central Europe

Testing of radar data from the new
OPERA NIMBUS production line



Table of contents

Table of contents 1
1. Introduction 1
2. Comparison of OIFS and Nimbus radar data availability 2

2.1. Missing radars 2
2.2. Number of files per radar 2
2.3. Number of datasets and elevations for each radar station 3
2.4. 2D Histograms of reflectivity data 5
2.5. Content comparison of OIFS vs Nimbus data 7

3. Processing by HOOF 9
4. Processing by BATOR 9
5. Conclusions 12
6. References 13
7. Appendix 13

7.1. Assimilation experiments paths 13
7.2. Preparation of testing data for OPERA hubs 13
7.3. Mix of notes 14
7.4. Technical notes 14

1. Introduction

The provisional data centre Odyssey (denoted as OIFS) of the OPERA program will be
replaced this year by three new production lines capable of better serving the diverse needs of
various user groups. For the specific purpose of NWP assimilation, a dedicated Nimbus OPERA
radar hub is established and is operated by Geosphere Austria (formerly known as ZAMG). Upon
gaining access to the Nimbus Hub in October 2023, we observed differences not only in the
number of radars but also in the processed content. This prompted our decision to independently
compare the outputs of these two OPERA hubs. The control period was from 2024-01-01 to
2024-01-20. Data files were downloaded from OIFS and Nimbus data hub once a day for the
previous day. Only 15 minutes data valid at every hour and 0 minute has been downloaded. A
quick overview analysis of OIFS and Nimbus data was performed. The number of received files
from OIFS and Nimbus were compared. The number of datasets and the number of elevations
present in each file were compared. Heat maps of the number of observations in the DBZ and TH
quantity were produced. Two experiments with a 3-hour assimilation cycle were set to test OIFS
and Nimbus data for a shortened period from 2024-01-10 to 2024-01-20, due to excessive crashes
of HOOF version 1.9 on Nimbus data.

1



2. Comparison of OIFS and Nimbus radar data
availability

It is very important to ensure a smooth transition to the new Nimbus processing line as the
shutdown of the OIFS hub is approaching. The new Nimbus hub should guarantee the availability
of data from the same radars but also should ensure that the data are of comparable or better
quality. Initially, we focus on monitoring the number of individual radars by country and identifying
any missing records. The selected period includes the newest data available till the beginning of
the stay. Data are processed from 2024-01-01 to 2024-01-20.

2.1. Missing radars
During the investigation period, we identified several radar stations that were missing from the
OIFS or Nimbus production line. The list of the missing stations is shown in Table 1. The table
shows that neither of the production lines is perfect but the Nimbus production line had more radar
stations overall.

Table 1: Radars missing in OIFS or Nimbus data sets in the period 1-20 January 2024

OIFS missing radars Nimbus missing radars
dksin rsfrg
dkste eszar
fraja
isbjo
isska

2.2. Number of files per radar
The number of files for each radar station was compared between OIFS and Nimbus

production line. Any radar station with more than a one percent difference in the number of files
between production lines was included in Table 2. As can be seen, the Nimbus production line is
missing almost all files for certain stations. The Nimbus production line has problems mainly with
Polish, Romanian, Spanish and Greek radars but also German, Danish and French radar stations
are in Table 2.

2



Table 2: Radars with a significant difference in the number of files between OIFS and
Nimbus data sets in the period 1-20 January 2024 (the full sample should have 480 files)

Radar OIFS file
count

Nimbus file
count Difference [%]

plpas 475 27 94.3
grand 326 96 70.6
grlar 335 112 66.6
plgda 478 356 25.5
robar 250 194 22.4
plpoz 479 372 22.3
romed 474 376 20.7
plrze 476 387 18.7
roora 478 410 14.2
rotim 478 418 12.6
plswi 479 441 7.9
plleg 479 445 7.1
robob 124 116 6.5
deneu 476 469 1.5
essev 479 472 1.5
eslid 452 446 1.3
dkvir 457 451 1.3
eslpa 478 472 1.3
esbad 479 473 1.3
essse 436 431 1.1
frtre 479 474 1.0

espma 479 474 1.0
esmad 479 474 1.0
esbar 479 474 1.0

2.3. Number of datasets and elevations for each radar
station

To better understand the differences between OIFS and Nimbus data, the number of
datasets and elevations were compared between both hubs. Only data valid on 2024-01-15 00:00
UTC are compared. As can be seen from Table 3 the structure of OIFS and Nimbus files differ
significantly. A given file may contain multiple elevation scans. Differences were found in the start
times of the included elevation scans, e.g. the radar bejab contains three VRAD scans of VRAD
starting at minute 49, 54 and 59 on elevation 0.5, while the OIFS contains three VRAD scans at
minute 54, 59 and 04 (see files T_PAZZyy_C_EUON_20240118120000_bejab.hdf and
T_PAZZ42_C_EUOC_20240118120000_bejab.h5.

Differences in the number of datasets are further analysed later, see section 2.5.

3



Table 3: Discrepancies in number of datasets and elevations between OIFS and Nimbus
data on 2024-01-15 00:00 UTC. Possible errors in this table!

radar OIFS Datasets Nimbus Datasets Common
Elevations

Missing
Elevations in

OIFS

Missing
Elevations in

Nimbus

behel 111 39 12 0 0

bejab 156 63 15 2 0

bewid 84 48 15 0 0

czbrd 111 39 12 0 0

czska 111 39 12 0 0

deasb 93 33 10 0 0

deboo 93 33 10 0 0

dedrs 63 33 10 0 0

deeis 93 33 10 0 0

deess 93 33 10 0 0

defbg 93 33 10 0 0

defld 93 33 10 0 0

dehnr 93 33 10 0 0

deisn 93 33 10 0 0

demem 93 33 10 0 0

deneu 93 33 10 0 0

denhb 93 33 10 0 0

deoft 93 33 10 0 0

depro 93 33 10 0 0

deros 93 33 10 0 0

detur 93 33 10 0 0

deumd 93 33 10 0 0

dkrom 43 33 26 0 8

dkvir 37 29 24 0 7

esalm 11 13 3 0 0

esbad 11 13 3 0 0

esbar 11 13 3 0 0

eslid 11 13 3 0 0

eslpa 11 13 3 0 0

esmad 11 13 3 0 0

esmur 11 13 3 0 0

espma 11 13 3 0 0

essan 11 13 3 0 0

essev 11 13 3 0 0

4



essse 11 13 3 0 0

hrbil 39 30 9 0 0

hrdeb 39 30 9 0 0

hrgol 39 30 9 0 0

hrgra 39 30 9 0 0

hubud 38 38 29 4 4

huhar 48 38 11 2 1

hunap 38 38 10 2 2

hupog 38 38 14 2 1

husze 38 38 11 2 1

mtgud 113 36 11 0 0

skjav 111 39 12 0 0

skkoj 111 39 12 0 0

sklaz 111 39 12 0 0

2.4. 2D Histograms of reflectivity data
The 2D histogram analysis provides a comprehensive visual representation of the data. By

plotting the counts of measured reflectivity for each radar station, we could quickly identify any
significant variations or patterns across different stations. We chose for simplification observations
collected over 24 hours on 2024-01-18. For several radar stations we saw fewer observations in
the Nimbus data compared to OIFS, for instance, see the hubud station in Figure 1.

The Swiss stations in Nimbus data have significantly fewer observations and also have an
oddly placed minimum that makes them very difficult to use in the assimilation of the ALADIN
model (see Figure 2). BATOR calculates the minimum detectable radar reflectivity as a function of
distance from the radar (here denoted by detection threshold). This function is used to assign a
value to undetected observations. We used the same algorithm as in BATOR and plotted the radar
detection threshold with a red line. As you can see in Figure 2, the radar detection threshold is
quite wrong for the chlem radar station.

Note: chlem station has the coded value for undetect=1 in hdf file but DBZ data
contain zeros for undetected observation instead!

The British stations in Nimbus data have similar issues as the Swiss stations, see Figure 3.

5



Figure 1: 2D histogram of the number of observations in the DBZ quantity for the radar
“hubud” on 2024-01-18, red line indicates the radar detection threshold, pink and turquoise
lines indicate the radar detection threshold with the minimum reflectivity factor of -30dBZ

and -40dBZ, respectively.

OIFS Nimbus

Figure 2: 2D histogram of the number of observations in the DBZ quantity for the radar
“chlem” on 2024-01-18, red line indicates the radar detection threshold, pink and turquoise
lines indicate the radar detection threshold with the minimum reflectivity factor of -30dBZ

and -40dBZ, respectively.

OIFS Nimbus

Figure 3: 2D histogram of the number of observations in the DBZ quantity for the radar
“ukcas” on 2024-01-18, red line indicates the radar detection threshold, pink and turquoise
lines indicate the radar detection threshold with the minimum reflectivity factor of -30dBZ

and -40dBZ, respectively.

OIFS Nimbus

6



2.5. Content comparison of OIFS vs Nimbus data
The content of OIFS vs Nimbus files was compared with the local tool ls_H5all.py (uses

h5py library) which lists a basic overview of the content of the given file. The Nimbus files are more
compact in terms of a number of datasets, as can be seen in Table 3. Table 4 shows the difference
in structure for the same variables, time, elevation between the OIFS file and the Nimbus file.

Table 4: comparison structure of OIFS vs Nimbus file for czbrd 2024-01-18 11UTC

OIFS Nimbus

/dataset1:
elevation 0.100000:
startdate 20240118:
starttime 105345:
data1 VRAD:

/dataset25:
elevation 0.100000:
startdate 20240118:
starttime 105345:
data1 DBZH:
quality1 fi.fmi.ropo.detector.classification:
quality2 se.smhi.detector.beamblockage:
quality3 pl.imgw.quality.qi_total:

/dataset97:
elevation 0.100000:
startdate 20240118:
starttime 105345:
data1 TH:

/dataset24:
elevation 0.100000:
startdate 20240118:
starttime 105345:
data1 DBZH:
data2 VRADH:
data3 TH:
quality1 fi.fmi.ropo.detector.classification:
quality2 se.smhi.detector.beamblockage:
quality3 pl.imgw.quality.qi_total:

After Hoof
/dataset12:

elevation 0.100000:
startdate 20240118:
starttime 105345:
data1 DBZH:
data2 TH:
quality1 fi.fmi.ropo.detector.classification:
quality2 se.smhi.detector.beamblockage:
quality3 pl.imgw.quality.qi_total:

After Hoof
/dataset12:

elevation 0.100000:
startdate 20240118:
starttime 105345:
data1 DBZH:
data2 TH:
quality1 fi.fmi.ropo.detector.classification:
quality2 se.smhi.detector.beamblockage:
quality3 pl.imgw.quality.qi_total:

To be able to assimilate the OPERA radar data it is necessary to have all of the following
parameters and necessary metadata in the dataset (e.g. NI for VRAD) in a dataset:

● For assimilation of reflectivity: DBZ (DBZH), TH, QC;
● For assimilation of radial wind: VRAD, DBZ, QC.

We observed several typical issues in the provided data from both Nimbus and OIFS hubs:

● Some datasets contain only DBZ, QC but it missing corresponding TH;
● Some datasets contain only VRAD but without corresponding DBZ and QC;
● Some datasets contain only VRAD and DBZ without corresponding QC;
● Some radars write precise values of elevation measured by radar in the datasets instead of

preset/requested elevation angle for the radar. This means that one concrete elevation is

7



changing the elevation angle from one scan to the other. The angle difference is less than
0.1 degree (e.g. hubud).

It would be beneficial to have a tool to compare the contents of the radar data files from
both hubs since the data are stored in a different number of datasets, which may also contain
different starttime. We would like to compare not only the attributes of the files but also the
structural similarity of the dataset from both production lines because simple root mean square
error is not a good indicator of similarity of the data due to double penalty in small shifts of the
data.

Structural similarity
We decided to use opencv (cv2) and skimage python libraries (example of usage https://

www.kaggle.com/code/jsrshivam/structural-similarity) for addressing the structural similarity
between data from OIFS and Nimbus hub. This automated method identifies field disparities and
allows for straightforward evaluation.

The first step was to write a python program that randomly generates two 2D arrays
(data_oifs, data_nimbus) evolving in time and compares them. This program is made for testing
the functionality of the cv and skimage libraries themselves. The program is located on kazi2
machine at CHMI: /home/mma271/app/compare_opera/bin/ss/oifs_vs_nimbus/
fake_circle_compare_ssim.py

Figure 4: Structural similarity of randomly generated data of size 50x50 pixels.

After conducting preliminary tests with generated data, I attempted to proceed with real
data experiments. However, there were unresolved crashes in the h5py library of my miniconda
user installation on the CHMI:kazi (python3.11) system. I tried my miniconda user installation on
the SHMU:HPC3 (python3.9.18), but the same problem was observed. This was a blocking point in

8

https://www.kaggle.com/code/jsrshivam/structural-similarity
https://www.kaggle.com/code/jsrshivam/structural-similarity


the moment of stay. I have therefore postponed further investigation of this method until my return
to SHMU, where I plan to conduct a thorough examination.

3. Processing by HOOF

A Python based tool called HOOF (Homogenization of OPERA OIFS Files, ) was used to
cope with inhomogeneity in the OPERA dataset in terms of structure and metadata. This tool
allows the processing of the entire OPERA dataset with BATOR. We started testing with version
1.9 of HOOF, which was used during previous stays and studies at CHMI. We first tried to process
all data on the selected period (from 2024-01-01 to 2024-01-20). Unfortunately, HOOF 1.9 cannot
handle incomplete quality flags due to missing the what/gain section for the new quality flag
“eu.opera.odc.hac”. Depending on radar scanning strategy it leads to no data or a partial hdf5-file
after the HOOF. According to personal communication with Ladislav Meri from the SHMU radar
department, the eu.opera.odc.hac quality flag is coded without the gain attribute and should
represent ground clutter. The problem with eu.opera.odc.hac stopped on 10 January. Due to this
reason, we shortened the testing period for assimilation experiments, see section 4.

Following the implementation of HOOF2, which requires Python 3, it was observed that the
software demonstrated enhanced capability in managing incomplete quality flags. This
improvement was attributed to its selective writing of requested quality flags, effectively
circumventing the problematic flag “eu.opera.odc.hac”.

List of typical error/warning messages:
● Warning: The DBZ group /dataset1/data1 has no corresponding TH group
● Warning: A TH quantity from /dataset1/data1 has no matching DBZ, omitting the TH dataset
● DBZ quantity in /dataset1/data1 does not have the required quality groups,

this error message often appears when VRAD and DBZ are in the same dataset.

VRAD datasets sometimes have different starttime than DBZ, TH and do not contain quality
flags, typically for Hungarian and Spanish radars. Polish radars have missing TH for most levels in
Nimbus data.

4. Processing by BATOR

To compare the OIFS and Nimbus data we set up two assimilation experiments and we
shortened the period for experiments due to the problem with the eu.opera.odc.hac quality flag in
the HOOF version 1.9 (HOOF version 2 was not installed at the moment of preparation). The
period was from 2024-01-10 to 2023-01-20. We made a subset of files that were in both data
sources to exclude differences from missing files. We used the ALARO NH-v1B model on cycle
cy43t2ag_op2. We run a 3-hour assimilation cycle with the default setup of radar assimilation, see
Appendix for more details. The data from selected radars were first homogenised by HOOF and
then read by BATOR and finally used in assimilation. We had no more technical issues with
processing Nimbus data.

9



A comparison of the number of observations retrieved by BATOR from OIFS and Nimbus
data is shown in Figure 4. The counts of observations are split according to the country of the radar
station. OIFS data are denoted by a turquoise line, Nimbus data are in red. As can be seen, some
countries have the same number of processed observations from OIFS and Nimbus, such as the
Czech Republic, Croatia and France. However, other countries have a significant decrease in
Nimbus data compared to OIFS data, such as Denmark, Spain, Hungary and Germany. This data
drop is very dependent on the station itself. We selected the three stations with the largest drop in
Nimbus data compared to OIFS data, see Figure 5. German radar deneu has a very similar
number of observations between Nimbus and OIFS data the first part of the period. However, from
14 January there is a very significant decrease in the number of available observations in Nimbus
data. Danish radar dkrom always has less observations in Nimbus data compared to OIFS data.
Hungarian radar hubud is missing observation in Nimbus data very often, but there are also times
when Nimbus and OIFS data have the same number of observations, this could indicate some
processing issues in the Nimbus hub.

Figure 5: Number of observations per state processed by BATOR during the period from
2024-01-10 to 2024-01-20.

turquoise is OIFS red is Nimbus

10



Figure 6: Number of observations for the deneu, dkrom, hubud radar processed by BATOR
during the period from 2024-01-10 to 2024-01-20.

deneu

dkrom

11



hubud

5. Conclusions

A brief comparison of data collected from the recently started Nimbus production line with
the existing OPERA OIFS production line was made during this stay. Nimbus data contained more
radar stations over the examined period (from 2024-01-01 to 2024-01-20) compared to OIFS. On
the other hand, more often there were missing files in Nimbus data compared to OIFS, see
Table 2. Two-dimensional histograms gave the impression that the Nimbus data contained fewer
observations compared to the OIFS data. And also showed an oddly placed minimum of Nimbus
data for Swiss and British radar stations. There was an attempt to explore the structural similarity
between the data from both production lines. Unfortunately, it was postponed due to technical
problems with python libraries.

The new Nimbus data were homogenised by HOOF. Unfortunately, HOOF version 1.9
cannot handle incomplete quality flags (due to missing what/gain for the new quality flag
“eu.opera.odc.hac”). Depending on radar scanning strategy it leads to no data or a partial hdf5-file
after the HOOF. The HOOF version 2 can handle incomplete quality flags as it writes only
requested ones (without the problematic flag “eu.opera.odc.hac”).

At the last step, two assimilation experiments were prepared to compare the amount of
observations processed by BATOR. We observed a significant decrease in the number of
observations in Nimbus data compared to OIFS data, especially for radar stations from Denmark,
Spain, Hungary and Germany. The positive aspect is that so far, we haven't encountered any
technical problems related to assimilation. However, it is important to note that a comparison of
assimilated observations was not done yet.

12



6. References

https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/

https://www.eumetnet.eu/wp-content/themes/aeron-child/observations-programme/current-activitie
s/opera/database/OPERA_Database/index.html

7. Appendix

7.1. Assimilation experiments paths
experiment oifs data (kazi2):/home/mma204/SX/scr/exp/zkd

work directory: /work/mma204/exp/zkd

experiment nimbus data (kazi2): /home/mma204/SX/scr/exp/zke
work directory: /work/mma204/exp/zke

plots: /work/mma204/exp/zkd

7.2. Preparation of testing data for OPERA hubs
For the purpose of expediting testing procedures, we required a concise set of OPERA

hubs data. This need led to the creation of the program create_tar_selected_cc.py, which
can be accessed at the following location:

kazi2: /home/mma271/app/compare_opera/bin/create_tar_selected_cc/

It is possible to define which radars from specific countries will be included in the testing tar.
The relevant parameters in the script are:

hubs = ["oifs","nimbus"]
cc = ["sk","cz","hu","hr"]

Example output:
/home/mma271/app/compare_opera/bin/test_output_nimbus.tar [sk,cz, hu, hr]
/home/mma271/app/compare_opera/bin/test_output_oifs.tar [sk, cz,hu,si]

This tool was customised for future use in ongoing work, particularly not only for comparing
radar files from each hub but also in subsequent model data assimilation experiments. However,
caution is advised, as files with the same radar names may not necessarily contain identical input
data. It will be better explained later with an example, but shortly in file with the same name may be
a different time period of scans.

13

https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/
https://www.eumetnet.eu/wp-content/themes/aeron-child/observations-programme/current-activities/opera/database/OPERA_Database/index.html
https://www.eumetnet.eu/wp-content/themes/aeron-child/observations-programme/current-activities/opera/database/OPERA_Database/index.html


For preparing pure file statistic we write python program which
class Radar:

def __init__(self, filename, lat=None, lon=None):
self.filename = filename
self.lat = lat
self.lon = lon
self.parse_filename()

def generate_tarfile_paths(unixtime_N, array_names, file_name_masks, file_name_ext):
def extract_main_filename(file_path):
def write_main_filenames_to_file(main_filenames, output_file):
def compare_files(file1, file2):
def compare_tar_files(tarfile1_path, tarfile2_path, output_file=None):
def list_files_in_tar(tarfile_path):
def print_radar_info(radar_array, array_name):
def print_radars_by_country(radar_array, country_code):
def print_unique_names_by_country(radar_array):
def print_unique_names_and_sum_by_country(radar_array):
def count_radars_by_country(radar_array):
def print_count_radars_by_country(radar_array):
def print_unique_names_and_sum_by_country(*args):
def print_unique_names_and_sum_table(*args, array_names=None):
def main(year_S, month_S, day_S, hour_S, minute_S, year_E, month_E, day_E, hour_E,

minute_E):

/home/mma271/app/compare_opera/bin/compare_tar_v010_single_day.py
/home/mma271/app/compare_opera/bin/compare_tar_v011.py

7.3. Mix of notes
Tu som docasne dal vsetok ten balast. Urobim si v tom poriadok, len nech to tu nerobi velky

pocet stran
https://docs.google.com/document/d/1jh43spm9UitBqoYoRtaC_yYuPKuIwxPUZwZShA-Rs

wM/edit#heading=h.tdeyemyb6wo4

7.4. Technical notes

Install of miniconda on chmu:kazi

For develop purpose we installed on CHMU:kazi miniconda3 ( Python 3.11.0 )

14

https://docs.google.com/document/d/1jh43spm9UitBqoYoRtaC_yYuPKuIwxPUZwZShA-RswM/edit#heading=h.tdeyemyb6wo4
https://docs.google.com/document/d/1jh43spm9UitBqoYoRtaC_yYuPKuIwxPUZwZShA-RswM/edit#heading=h.tdeyemyb6wo4


https://docs.conda.io/projects/miniconda/en/latest/ reason for that was that we need some
libraries which is not supported in python2.7

/home/mma271/miniconda3/bin/python
and also this packages
conda install conda-forge::pyproj
conda install conda-forge::h5py
conda install conda-forge::numpy
conda install conda-forge::argparse
conda install conda-forge::matplotlib
conda install conda-forge::skimage
conda install conda-forge::opencv
conda install conda-forge::scikit-image
conda install -c anaconda tk

[W:chmu:kazi] For kazi:python2.7 is missing tkinter (for HOOF2 gui)
https://docs.python.org/3/library/tkinter.html
[status solve when I come back to shmu] Test in shmu:hpc3 was not very helpful

but still

Problem with h5py library in miniconda

The same with miniconda and h5py problem appear in shmu:hpc3 and chmu:kazi
Q: -> P.Smerkol: maybe problem with parallel version
----------- processing file T_PAZZyy_C_EUON_20240101000000_skjav.hdf [ 19 / 28 ] -----------

Reading input file ...
Sorting datasets for homogenization ...
Validating homogenization data ...
Writing homogenized data ...

ERROR: unknown error in analysis, stack is:
Traceback (most recent call last):
File "/home/mma271/backup/hoof_v2/HOOF2.py", line 1725, in <module>

homogenizer.writeTo(outHdf)
File "/home/mma271/backup/hoof_v2/HOOF2.py", line 1014, in writeTo

outHdf[dataset][data].create_dataset("data", data=self.hdf[qty.origGroups[0]][qty.origGroups[1]]["data"],
compression="gzip", compression_opts=5)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^
File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
File "/home/mma271/miniconda3/lib/python3.11/site-packages/h5py/_hl/group.py", line 357, in __getitem__

oid = h5o.open(self.id, self._e(name), lapl=self._lapl)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
File "h5py/h5o.pyx", line 190, in h5py.h5o.open

KeyError: "Unable to synchronously open object (rank might cause reading passed buffer's end)"

15

https://docs.conda.io/projects/miniconda/en/latest/
https://docs.python.org/3/library/tkinter.html


import geopandas as gpd
import pandas as pd
import matplotlib.pyplot as plt

# Assuming you have a GeoDataFrame with country boundaries (world) - you may need to download this or use a different
source

world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))

# Assuming you have a DataFrame with country data (data)
# Example data
data = pd.DataFrame({

'cc': ['be', 'ch', 'de', 'fr', 'uk'],
'value': [1, 2, 3, 4, 5]

})

# Merge the country data with your data
merged_data = world.merge(data, how='left', left_on='iso_a2', right_on='cc')

# Create a figure and axes
fig, ax = plt.subplots(1, 1, figsize=(15, 10))

# Plot the map and fill by the 'value' column
merged_data.plot(column='value', ax=ax, legend=True, cmap='Blues', legend_kwds={'label': 'Value'})

# Save the figure
plt.savefig('filled_map.png', bbox_inches='tight')

# Show the plot
plt.show()

16


