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1. Introduction

The purpose of this paper is to make a synthesis of the state of the art radar data assimilation around the world. This means a description of main differences in the assimilation methods and a summary of obtained results and impact studies. The status of the AROME radar assimilation is also summarized.

2. Radar observations (a very simplified description)

Important radar measurements for meteorology are reflectivity and radar wind. Reflectivity is the backscattered radiation (originally emitted by the radar) from any object along the radar beam (target) in the direction of the radar. Radar wind is estimated from the phase delay of the backscattered radiation from moving targets according to the Doppler effect. Radar wind can be measured only with Doppler radars. Both raw wind and reflectivity measurements are post-processed in different ways:

Wind:

· VAD (Velocity Azimuth Display), which is an estimated wind profile from radial wind measurements on all vertical elevation

· Radial wind super-observations, which means a spatial averaging (smoothing) of the raw data over some pixels in order to get rid of horizontal correlations of observation errors

· Raw radial winds are also used to be filtered for spatial smoothing

Reflectivity:

· Cmax, which is the maximum reflectivity value of all elevations above the given pixel

· Column of elevation’s reflectivity values above the given pixel – volume data

· Estimated instantaneous precipitation

· Estimated cumulated precipitation

· Etc…

· Interpolation of any above to a regular grid

One has to mention that the emitted radiation is scattered back not only from the targets in our interest (orography, birds, insects), which makes necessary to apply an important amount of extra processing of the raw data (filters, corrections, etc.). These procedures are not detailed here but literature can be found on the website of ERAD conference 2008 for instance (http://erad2008.fmi.fi/proceedings/index/index.html).

3. Overview of radar assimilation methods used in NWP

The following figure gives a very general overview of the existing radar assimilation schemes applied in NWP models.


Figure 1:  Possible ways of assimilating radar information

3.1 Radar wind assimilation

Radar wind is assimilated with the Variational method (3/4DVAR) in many NWP models (HIRLAM, UM, AROME, MM5, WRF, ARPS). Most of the applications use radar radial wind information (Montmerle and Faccani, 2008, Montmerle et al., 2007, Lindskog et al., 2003) but there are examples of VAD assimilation as well (Lindskog et al., 2003). In case of VAD, the wind profile is assimilated similarly to radiosonde and wind profiler data (the observation operator consist of horizontal and vertical interpolations of the model wind to the location of the radar wind profile values). Radial wind data are often used as super-observations or they are processed with filters in order to smooth the very high-resolution raw information. The observation operator for radial wind data consist of a projection of the model wind u and v components at the observation location towards the radar (still in azimuthal direction):
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where θ is the azimuth angle of the radar bem. Then vh is projected on the slanted direction of the radar beam:
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where Φ is the elevation angle of the radar beam, d is the distance from the radar, r is the radius of the Earth and h is the height of the radar instrument (above the mean sea level). As in all Variational assimilation, both VAD and radial wind observations are meant to produce analysis increments in the function of the background and observation errors. Most of the Variational analysis applications are multivariate, that is radar wind observations produce not only wind but also pressure, temperature and humidity analysis increments. 

3.2 Summary on the impact

The impact of VAD and radial wind super observations were found to be positive in the synoptic scale (dx~20km) HIRLAM model via general score comparisons (BIAS and RMSE) (Lindskog et al., 2003). On higher resolution, Montmerle and Faccani (2008) reports an improvement of short range (up to +6h) precipitation forecasts (False Alarm Rate [FAR] and Probability Of Detection [POD]) due to radar radial wind assimilation. Xiao et al. (2005) and Gao et al. (2004) found positive impact of radar wind assimilation in the MM5 / WRF 3DVAR on heavy precipitation case studies. On a supercell case the VDRAS 4DVAR system (Variational Doppler Radar Assimilation System of NCAR) was found to reproduce well the storm in focus partly due to the use of radar wind data (Sun 2005).

3.2 Reflectivity assimilation

Reflectivity or post-processed information from reflectivity is assimilated with different approaches in different NWP models. The main approaches in use are Nudging, Variational analysis and Ensemble Kalman Filtering. Contrary to the case of radar wind, the assimilation of reflectivity information requires complicated observation operators including moist physics.

(a) Nudging

Nudging in general aims to force the model state towards available observations during the model integration. This is done by introducing a relaxation term, which measures the ‘observation minus model’ distance. With the Nudging scheme one does not assimilate the reflectivity itself but the precipitation estimated from it. A popular way of nudging precipitation information is the Latent Heat Nudging (LHN) (Jones and Macpherson, 1997). In LHN an extra temperature tendency is added to the thermodynamic equation, accounting for the latent heating that would generate similar rain in the model as the observation, according to the model physics:
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where F(T) stands for the model physics tendencies, (T/(tLHN stands for the LHN tendency, and ΔTLH is the needed latent heat for adjusting the model precipitation (RRm) to the observed precipitation (RRo) according to the model physics. The scheme implies that first model and observation rain are compared in the observation points i.e. the observation operator consist of the model moist physics and an interpolation to the observation points. It is to be noted, that the full physics can be used and there is no need for its adjoint. Other nudging schemes adjust the model humidity profile instead of the temperature (i.e. Davolio and Buzzi, 2004). The adjustment is proportional to the difference between the model and observed rain and it differs according to the model precipitation type (stratiform or convective).

(b) Variational assimilation

In Variational assimilation (3/4DVAR), the information from radar reflectivity is taken into account through a new Jo term, which measures the distance of the background and the radar information (reflectivity, rain, or derived temperature and humidity profiles). There are differences however in the observation operators providing the ‘model to reflectivity’ transformation depending on the implementation. 

· Direct assimilation: some implementations assimilate directly the reflectivity itself in the 3/4DVAR. Such examples are the MM5 and WRF implementations (Xiao et al., 2006). Here the control variable is the total water content (qt), which is first repartitioned to model rain water (qr), cloud water (qc) and water vapor (qv) through warm rain physics. The model rain water (qr) is then used to compute simulated ‘model’ reflectivity. Jo is then computed in the ‘reflectivity space’ and its gradient is computed with respect to reflectivity. Finally, the adjoint of the reflectivity operator and the repartitioning warm rain physics are used to compute the gradient with respect to the control variable (qt), i.e gradJo and gradJb can be added and a new search of the minimization can start.

· At Meteo-France (AROME) a two-step approach is applied, first providing 1D humidity pseudo observation profiles derived from reflectivity and second, assimilating these 1D profiles in the 3DVAR just like radiosonde observations. The humidity pseudo observations in AROME are generated via a Bayesian method. One has to know that at Meteo France, reflectivity observations are available as vertical profiles on several elevations in the location of the radar pixels. The 1D Bayesian method provides the humidity profile pseudo observation ypo as the linear combination of background humidity profiles (xi) in the neighborhood of the given radar reflectivity profile (yz). 
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One can see that the weight of a given background humidity profile depends on the departure of its reflectivity equivalent from the observed radar reflectivity profile. The reflectivity equivalent of the background humidity is provided by the radar simulator, which models the backscattered signal from the model hydrometeor particles provided by the full moist physics. A limitation of the 1D Bayesian method is that if there is no any precipitation in the model near the observed reflectivity there is no chance to find a good linear combination of neighboring humidity profiles, i.e. a “too dry” humidity pseudo observation will be proposed. There is an attempt to get rid of this limitation by forcing saturation in those model grid points, which are in the neighborhood of observed reflectivity profiles (Montmerle et al., 2007, Watterlot et al., 2008).

· At ECMWF a two-step approach is implemented as well (Lopez and Bauer, 2006, Marécal and Mahfouf, 2003). In there, hourly cumulated rain observations from radars and gauges are used to produce 1D Total Column Water Vapor (TCWV) observations via 1DVAR minimization. The 1DVAR control variables are specific humidity and temperature and the applied observation operator consist of interpolations and of linearized moist physics, which transforms the model humidity and temperature into precipitation in order to provide the observation minus background differences in the 1DVAR Jo. The 1DVAR minimization will find first a humidity profile, which fits both the background and the observations in the variational sense, then the vertical profile of humidity increments is integrated to TCWV. The TCWV observations are used in the 4DVAR assimilation. Note, that the 1DVAR method has limitations as well to produce TCWV pseudo observations if the model background is not rainy. In this case the cost function used in the 1DVAR:
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is reduced to 
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which is not depending any more on the model humidity and temperature x as x=xB and H(x)=0. Another drawback of this method is that the background is used twice during the analysis (first in the 1D- and second in the 4DVAR), which leads to relatively weak analysis increments.

· The operational JMA 4DVAR assimilates hourly cumulated precipitation with a one step approach (Koizumi et al., 2005). There a Jrain is added to the cost function, which measures the distance of the model and observed precipitation (note that the observed precipitation is interpolated onto a regular grid before running the analysis). The model precipitation is generated with the moist physics of the model. The gradient of Jrain is projected back to the control variable space with the adjoint of the moist physics.

(c) Ensemble Kalman Filtering

The EnKF (Ensemble Kalman Filter) and ETKF (Ensemble Transform Kalman Filter) method were tested at the University of Oklahoma and at NCAR (Synder and Zhang, 2003, Tong and Xue, 2004). In these tests simulated radar observations were used in storm cases and were focusing on the impact of flow dependent background errors mostly.

3.4 Summary on the impact

LHN and nudging of precipitation improves the precipitation forecast in the first 6 hours mainly (Macpherson, 1999, Davolio and Buzzi, 2004). ECMWF reported the slight improvement of classical scores due to precipitation assimilation (Lopez and Bauer, 2006). Xiao et al. (2006) could improve the forecast of the Typhoon Rusa by their direct method for reflectivity assimilation. Several case studies at Meteo France show a slight improvement in the location and structure of mesoscale precipitating systems when assimilating reflectivity data (Watterlot et al., 2008). Koizumi et al. (2005) at JMA found positive impact of rain assimilation on the precipitation up to 18 hours.

4. Status of the AROME radar assimilation

The AROME reflectivity assimilation is technically available in CY33T1. It has already been tested in a 3h RUC cycling on several cases at Meteo France. A description of the methodology and the impact can be read in Watterlot et al. (2008), in Montmerle et al. (2007) or in this paper’s previous sections. The further development will focus on the improvement of the 1D Bayesian method, the quality control and to take into account the impact of horizontal correlations of observation and background errors. A complementary information is that according to the experience at Meteo France, the reflectivity operator is also well applicable in visual verification of precipitation cases. Namely, the reflectivity operator provides ‘model reflectivity‘, which is more comparable with the observed reflectivity than the model precipitation (what we used to compare in general so far).

5. Towards LACE radar assimilation

Accounting for radar data assimilation in LACE countries, a key issue will be the preprocessing of radar data in order to feed the ALADIN/AROME radar assimilation system. Namely, it must be fed with vertical profiles of reflectivity on a high-resolution regular grid. The possibility of generating such information from the available radars in LACE countries should be investigated as soon as possible. As an example of what exist presently in Hungary, reflectivity profiles on a regular grid are available with a 15 minute time frequency with a 8 minute delay due to the data processing. This information is available for all the 3 available radars separately, however no composite of these information is created at the moment. 

Complementary to the investigation of appropriate radar input generation over Central Europe, radar assimilation tests could be started with pre-prepared data from France. These tests would be rather learning exercises than real impact studies as no useful information can be gained from radars in France over Central Europe. 

Another good preparation for LACE partners to the technical details of radar assimilation would be to use the reflectivity operator for verification purposes first. This would not require radar observation data but only to learn how to make work the reflectivity operator and generate ‘model reflectivity’ plots.

An important thing to notice is that the reflectivity operator needs microphysics. This implies that either an ALARO or AROME implementation is needed to use radar information in the initial conditions. So far only the AROME microphysics have been tested at Meteo France. A challenge for LACE would be to try what the 1D Bayesian method gives using the ALARO microphysics.
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