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1 Introduction

In the ALADIN 3D-VAR data assimilation system, for the time being, background errors are considered to be
constant in time, however we all know that background forecasts might be of variable quality depending on
the weather situation. Kalman Filter is an approach to take into account the time dependency of background
errors in the analysis by ensuring the time evolution of the background error covariance matrix from one
analysis time step to another. The implementation of KalmanFilter, however, is extremely expensive in large
dimension systems such as numerical weather prediction (NWP) models, which excludes the possibility of a
real time operational application with the present computers. The so called Ensemble Kalman Filters aim to
reduce the cost of computing the time evolution of the background error covariance matrix. They all estimate
it from a small size ensemble of background forecasts but different approaches exist for the generation of
initial perturbations for them. At the Hungarian Meteorological Service (HMS) the so called Ensemble
Transform Kalman Filter (ETKF) has been chosen for implementation. Details about its theoretical
background and practical implementation are presented in this paper.
In the following we summarize the basic concepts of data assimilation in general and Kalman Filter methods
in particular. In Section 3 the theoretical background of ETKF is detailed, while in Section 4 its practical
realization is shown.

2 Data assimilation and Kalman Filter

Data assimilation systems provide initial conditions or analysis (xa) for NWP models using the actual
observations (y) and a background forecast (xf ) valid at the analysis time as primary information for the
analysis procedure. Optimal least-square and variationaldata assimilation methods compose this analysis
according to the so-called BLUE (Best Linear Unbiased Estimation) estimation:

xa = xf + K(y −H(xf )) (BLUE)

whereK is the Kalman gain:
K = PfH⊤(HPfH⊤ + Po)

−1.

In (BLUE), H denotes the observation operator andH its linearized around the background statexf

(H = ∂H
∂x (xf )). These operators enable the representation of the model state at the space of the observations.

ThePf andPo, background and observation error covariance matrices aredefined as follows:

Pf := E(εf εf
⊤) and Po := E(εoεo

⊤), (1)
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whereE(·) denotes the expected value,εf = xt − xf andεo = H(xt) − y stand for the background and
observation errors respectively wherext is the unknown true state of the atmosphere. Further assumptions on
the errors are that:

1. Each error is of expected value of zero, i.e.E(εf ) = E(εo) = 0 (the corresponding estimate is
unbiased, it does not contain systematic error).

2. Background and observation errors are uncorrelated, i.e. E(εfεo) = 0.

Similarly to (1) the error covariance matrix of the analysiscan be defined as

Pa := E(εaεa
⊤), (2)

whereεa = xt − xa. In an assimilation system based on (BLUE), the following relation holds between the
analysis and the background error covariance matrices:

Pa = (I − KH)Pf , (3)

whereI denotes the identity matrix (Bouttier and Courtier [2]). Let us denote the degree of freedom of an
NWP model byn (n ≈ 107) and the number of observations byp (p ≈ 104 − 106). Thenxf andxa are
vectors of sizen, y is a vector of sizep, the covariance matrices are of sizen × n, the Kalman gainK is a
matrix of sizen × p, and the linearized observation operatorH is a matrix of sizep × n.
ThePf background error covariance matrix is often assumed to be constant in time in the data assimilation
systems, however, it is well known that background errors depend a lot on the actual weather situation,
therefore it is desirable to release this consideration. The main idea of Kalman Filter methods is to update
matrix Pf at each analysis step so that equations (BLUE) and (3) alwayshold. The “original” Kalman Filter
method was introduced by Rudolf Emil Kalman in 1960 (see Kalman [9]). He has shown that taking into
account the same assumptions as above, the following relation can be obtained between the covariance
matricesPf andPa (see Kalman [9] and Kalnay [10, Chapter/Section 5.6]):

P k+1
f = Mk+1

k P k
a Mk+1

k

⊤
+ P k+1

M , (KF)

where indexk denotes thekth analysis step,M is the linearized propagator of the nonlinear modelM (i.e. a
matrix of sizen × n) andPM is the covariance matrix of the linear model error (containsthe linearization
error as well). ThePM matrix is usually neglected in practice, however, there arealso efforts on its estimate
(see e.g. Tremolet [11]).
However the following problems arise for the realization ofthe algorithm (KF):

– The original Kalman Filter is only applicable for linearM = M model. In order to extend the method
to nonlinear models, the Extended Kalman Filter has been introduced, where the nonlinear operatorM
is assumed to be linearized around the background state.

– Since the degree of freedom of atmospheric models isn ≈ 107, the computation of (BLUE) cannot be
performed directly. Thus, the variational algorithms havebeen introduced where the Kalman gain
matrixK is constructed implicitly (Courtier et al. [3]). Therefore, K is not available explicitly for
computing the new error covariance matrixPf from formula (KF).

– Determination of matrixPf according to formula (KF) would needn ≈ 107 integration with the tangent
linear model and its adjoint (which is the transpose of the tangent linear model operator).

Several approximate methods have been proposed in order to by-pass these implementation problems. They
might come from different approaches but all of them aim to reduce the dimensions used in the the Kalman
Filter equation (KF). The so-called Reduced Rank Kalman Filter developed at ECMWF uses Hessian singular
vectors to define a low-dimensional subspace where thePf matrix is evolved (Fisher [4]). Other approximate
Kalman Filter methods are based on the ensemble technique where the low-dimensional subspace is defined
by a small size ensemble (Ensemble Kalman Filter (EnKF) and Ensemble Transform Kalman Filter (ETKF)).
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3 Ensemble techniques for Kalman Filtering

Furthermore we focus on the Ensemble Kalman Filter and the Ensemble Transform Kalman Filter methods
more in details.

3.1 Ensemble Kalman Filter (EnKF)

In the case of EnKF the error covariance matricesPa andPf are obtained fromk (k ≪ n) ensemblemembers
(i.e. from a statistical population). MatrixPa can be estimated fork ensemble members as follows (see
Houtekamer and Mitchell [8], Evensen [6, Chapter 2.4.2], Gillijns et al. [5]):

Pa ≈ 1

k − 1

k∑

j=1

(xa,j − xa)(xa,j − xa)
⊤. (4)

Let us consider the following
Za = 1√

k−1
(za,1, za,2, . . . , za,k)

matrix of sizen × k, whereza,j := xa,j − xa (j = 1, ..., k) are the analysis dispersions, i.e. the differences
between thejth memberxa,j and the ensemble averagexa. Observe that with this notation the covariance
matrix Pa of the analysis error can be written from (4) as:

Pa = ZaZ
⊤
a , (5)

which is the product of matrixZa and its transpose. Then one can assume that the background dispersions are
obtained by integrating the analysis dispersions with the linear model, that is,

Zf = MZa (EnKF)

and then
Pf = ZfZ⊤

f = MZaZ
⊤
a M⊤ = MPaM

⊤,

hence, we get back the formula (KF) of the Kalman Filter (neglecting the model error’s covariance matrix
PM ). The advantage of this method is that onlyk integrations are needed in formula (EnKF). It is remarked
that the Ensemble Kalman Filter is one of the so-calledsquare-root filters, becauseZa is the mathematical
square-root ofPa according to formula (5) (see Tippett et al. [12]). Since

1

k

k∑

j=1

zf,j =
1

k

k∑

j=1

(xf,j − xf ) =
1

k

k∑

j=1

xf,j −
1

k

k∑

j=1

xf = xf − 1

k
kxf = 0,

the average of the dispersionszf,j is zero, hence, they are linearly dependent. Therefore, therank of matrixPf

is onlyk − 1. This means that we estimate matrixPf of sizen × n ≈ 107 × 107 by a matrix with
“information” of k − 1 (this phenomenon is usually called rank deficiency). It can be shown that EnKF
method is optimal in the sense of formula (3) only if the observations are also perturbed. It is also mentioned
here that there are also other consequences as well, for instance, the collapse of ensemble members, sampling
noise due to the small number of ensemble members, long distance correlation between them, etc.

3.2 Ensemble Transform Kalman Filter (ETKF)

The advantage of ETKF is that, unlike the Ensemble Kalman Filter, the observations are not to be perturbed in
order to get an optimal estimate. The basic idea behind ETKF is that there exists a relationship between the
dispersions of the analysis and the dispersions of the background, that is

Za = ZfT, (6)
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whereT denotes the (for the time being unknown) transformation matrix of sizek × k describing this
relationship. MatrixT can be determined from the following assumptions:

– the method is optimal in the sense of formula (3),

– the matrix of the dispersions is the square-root of the background error covariance matrix.

Hence, we are seeking matrixT under the following assumptions:






Za = ZfT,

Pa = (I − KH)Pf , where K = PfH⊤
(

HPfH⊤ + Po

)−1
,

Pf = ZfZ⊤
f .

(ETKF)

From formulae (ETKF) matrixT can be determined as (for the derivation see in Bishop et al. [1]):

T = C(Γ + I)−1/2, (7)

whereI is the identity matrix and
Z⊤

f H⊤P−1
o HZf = CΓC⊤.

Thus, matrixC contains the normalized eigenvectors of the matrixZ⊤
f H⊤P−1

o HZf , and the diagonalΓ
matrix contains the corresponding eigenvalues. MatrixZa defined by formula (ETKF) contains the dispersions
to be added to the analysisxa computed from the control member (e.g.xf,1). The new background members
xnew

f,j are determined by integrating the new analysis “ensemble” membersxa,j with the model (j = 1, ..., k).
From their dispersions the new values of matricesPf andPa can be computed, and so on. The algorithm is
shown inFigure 1.

Let us make the remark that the ETKF method has also a great significance in the field of observation targeting
due to its potential to compute a future analysis error covariance matrix through the transform (6) and the
estimation (5). It namely makes possible to minimize the analysis and the forecast errors of a later time instant
(called respectively the targeting and the verification time) with respect to the assimilation of possible adaptive
elements of the observing system (drop sondes, aircrafts, etc.).

4 Realization of Ensemble Transform Kalman Filter at the Hungarian
Meteorological Service

In this section we give an overview on the most important features about the practical realization of Ensemble
Transform Kalman Filter at our Service in the framework of the ALADIN 3D-VAR data assimilation
systemẆe remark and warmly acknowledge that the idea behind the whole realization of ETKF at the HMS
was originally suggested by Sándor Kertész. Following the algorithm of ETKF shown in Figure 1, one should
perform the following steps:

1. Build matrixZ⊤
f H⊤P−1

o HZf

2. Solve the eigenvalue problemZ⊤
f H⊤P−1

o HZf = CΓC⊤ (normalize the eigenvectors)

3. Create transformation matrixT = C(Γ + I)−1/2

4. Construct analysis dispersions withZa = ZfT

5. Compute new analysis members withxa,j = xa + za,j , j = 1, ..., k

6. Generate new ensemble members withxnew
f,j = M(xa,j), j = 1, ..., k
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Figure 1: Algorithm of Ensemble Transform Kalman Filter (using analyisxa computed from the control member
xf,1).

7. Compute the new error covariance matrixP new
f .

Hereafter the practical realisation of these steps will be briefly explained with special emphasis on the
technical details of the ALADIN data assimilation system.

4.1 Computation of matrix Z
⊤
f H

⊤
P

−1
o HZf

Let us observe that matrixZ⊤
f H⊤P−1

o HZf can be written as

Z⊤
f H⊤P−1

o HZf = V ⊤V with V := P−1/2
o HZf , (8)

where matrixV is of sizep × k. Matrix Po is diagonal containing the variations (i.e. the squares of the
standard deviations) of the observation error. MatrixHZf can be written as follows:

HZf = H 1√
k−1

(
zf,1, zf,2, ..., zf,k

)
= 1√

k−1

(
Hzf,1,Hzf,2...,Hzf,k

)
,

where the termsHzf,j (j = 1, ..., k) can be estimated as

Hzf,j = H(xf,j − xf ) ≈ H(xf,j) −H(xf ).

H(xf,j) andH(xf ) can be written as the difference between the observation andthe so-called first guess
departure (i.e. the difference between the observation andthe background) (Kertész, personal
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communication). These values are stored in the ALADIN observation database (ODB) by namesobsvalue
andfg_depar. Therefore, one can further write that

H(xf,j) = y − (y −H(xf,j)) = obsvalue− fg_depar.

Then the entries of matrixV are
1

√

σ2
j

(H(xf,j) −H(xf )) ,

whereσj denotes thejth entry of matrixPo, that is, the standard deviation of thejth observation error stored
in theODB asobs_error. Thus, the above formula can be written using the variables of the ODB as

[(obsvalue− fg_depar)
︸ ︷︷ ︸

jth ens. member

− (obsvalue− fg_depar)]
︸ ︷︷ ︸

average

/ obs_error
︸ ︷︷ ︸

jth ens. member

= [(fg_depar)
︸ ︷︷ ︸

average

− (fg_depar)]
︸ ︷︷ ︸

jth ens. member

/ obs_error
︸ ︷︷ ︸

jth ens. member

.

According to the above formula,k new files, representing thek rows of matrixV = P
−1/2
o HZf , are

constructed in the following way:

V (i, j) = (P−1/2
o HZf )(i, j) =

=
1√

k − 1

1

σi
[H(xj − x)](i) (9)

=
1√

k − 1

1

obs_error(i)
[fg_deparx(i) − fg_deparxj

(i)],

where the valuesfg_depar andobs_error are to be obtained from theODB.
The content ofODB can be read with the so-calledodbviewerwhich is based onsql requests defining the
parameters we are interested in (in our casefg_depar andobs_error). The output ofodbviewer is a
simpleascii file containing the requested values. Thefg_depar andobs_error variables inODB are
filled during theSCREENING, i.e. the quality control of the observations. This means that in order to get all the
necessary information, theSCREENINGprocedure should be runk + 1 times taking the ensemble members
xf,j and their averagexf as background fields. Having a look at matrixV defined in (8), one expects it to be
computed only for those measurements which were accepted bythe quality control (i.e. active measurements)
of eachSCREENINGruns. Consequently, we are interested only in thefg_depar values corresponding to the
intersection of the active measurements. As a summary, for the computation of matrixZ⊤

f H⊤P−1
o HZf the

following subsequent steps should be done:

1. Run theSCREENINGtakingxf,j (j = 1, ..., k) andxf as background fields (k + 1 SCREENINGs
altogether)

2. Read eachODB resulted from eachSCREENING(useodbviewer andsql request files)

3. Compare theODB REPORTs and collect the observations which appear in all of them

4. Save the values offg_depar andobs_error only for these observations for each background field
xf,j andxf (this resultsk + 1 files)

5. With the help of the above files computeV (i, j) from formula (9) and save thek columns of matrixV
in k different files.
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Then matrixV ⊤V should be computed. Using the definition of the transpose

V ⊤(i, j) := V (j, i),

the(i, j)th entry of matrixV ⊤V can be determined as

(V ⊤V )(i, j) =

N∑

l=1

V ⊤(i, l)V (l, j) =

N∑

l=1

V (l, i)V (l, j),

whereN denotes the size of the files containing the columns ofV , i.e. the number of the common
measurements. We should add the product of thelth line of theith andjth files. The result can be written to a
new file, which now contains the matrixV ⊤V = Z⊤

f H⊤P−1
o HZf needed for the eigenvalue problem.

4.2 Solving the eigenvalue problem

The matrixZ⊤
f H⊤P−1

o HZf is of sizek × k and it is real-valued and symmetric, therefore, its eigenvalues are
real as well. In ALADIN we can use subroutineRG.F for solving the eigenvalue problem. AFORTRAN code
should be written which reads the data from the file containing the elements of matrixZ⊤

f H⊤P−1
o HZf to an

array and then callsRG.F in order to determine the eigenvectors and eigenvalues. We call the attention that the
definition of the transformation matrix refers toC andΓ as matrices obtained from formula

Z⊤
f H⊤P−1

o HZf = CΓC⊤,

however, routineRG.F solves the eigenvalue problem:

Z⊤
f H⊤P−1

o HZf = CΓC−1.

This means that in order to be consistent with the derivationof the transformation matrixT , the equality
C⊤ = C−1 should hold, that is,C should be an orthogonal matrix. Hence, the columns ofC (i.e. the
eigenvectors of matrixZ⊤

f H⊤P−1
o HZf ) should build an orthonormal system. Therefore, columns ofC

should be normalized after callingRG.F.

4.3 Derivation of the transformation matrix

Although the transformation matrixT was initially proved to be computed as

T = C(Γ + I)−1/2,

we will use another form suggested in Wei et al. [13]. They showed that the analysis dispersionsza,j are not
centered about their mean, not even when the background dispersionszf,j are centered about their mean. In
order to centerza,j about their mean, a so-called simplex can be applied. They also showed that a possible
simplex, having the necessary properties, is the matrixC⊤. Hence, matrixT can be obtained as

T = C(Γ + I)−1/2C⊤,

whereC denotes the matrix of the normalized eigenvectors, whileΓ the matrix of eigenvalues, andI is the
identity matrix. The latter two are diagonal, therefore, the power of their sum can be obtained easily. The
(i, j)th entry of matrixT can be written as

T (i, j) =

N∑

l=1

1√
λl + 1

vl(i)vl(j), (10)

whereλl is thelth eigenvalue andvl(i) is theith entry of thelth normalized eigenvector (i, j = 1, ..., k andN
denotes the length of the files). From the point of view of the realization this means that theFORTRAN

program (i) solves the eigenvalue problem in order to determine the eigenvectors and eigenvalues of matrix
Z⊤

f H⊤P−1
o HZf , and (ii) computes the transformation matrixT defined by formula (10) from the above

obtained eigenvectors and eigenvalues.
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4.4 Construction of the analysis dispersions

The next step is the computation of matrixZa of the analysis dispersions by the formula

Za = ZfT,

with

Zf =
1√

k − 1
(zf,1, zf,2, . . . , zf,k) , (11)

wherezf,j := xf,j − xf (j = 1, ..., k). Let us observe that the constant1√
k−1

is on both sides of equation (11),
because it appears in both matricesZf andZa. Dividing both sides of the equation by this constant, we obtain
that

(za,1, za,2, . . . , za,k) = (zf,1, zf,2, . . . , zf,k)T,

that is,

za,j(i) =

k∑

l=1

zf,l(i)T (l, j) for all i, j = 1, ..., k, (12)

whereza,j(i) denotes theith entry of thejth analyis dispersion vector. Formula (12) can be written as follows:

za,j(1) = zf,1(1)T (1, j) + zf,2(1)T (2, j) + · · · + zf,k(1)T (k, j)

za,j(2) = zf,1(2)T (1, j) + zf,2(2)T (2, j) + · · · + zf,k(2)T (k, j)

...

za,j(n)
︸ ︷︷ ︸

za,j

= zf,1(n)T (1, j)
︸ ︷︷ ︸

zf,1T (1,j)

+ zf,2(n)T (2, j)
︸ ︷︷ ︸

zf,2T (2,j)

+ · · · + zf,k(n)T (k, j)
︸ ︷︷ ︸

zf,kT (k,j)

.

One can see that it is enough to multiply all elements in fileszf,j (j = 1, . . . , k) by the entries of the
transformation matrixT in order to get the analysis dispersion filesza,j (j = 1, . . . , k). In order to fasten this
procedure, each script computing thejth analysis dispersion can be run on a different processor (that is, all
scripts at the same time), since they are independent from each other. It is remarked that one can obtain the
averagexf and the differences from it (i.e. the background dispersions zf,j) from the available background
fieldsxf,j for instance by using a program similar to the subroutineBLEND.F, which is a simple routine for
adding two ALADIN files.

4.5 Computation of the new values

New analysis members. After determining the analysis dispersionszf,j, the new analysis members are
obtained by

xa,j = xa + za,j , j = 1, ..., k

wherexa denotes the analysis field computed by a data assimilation method (e.g. 3D-VAR) from the control
ensemble member (e.g. fromxf,1).

New ensemble members. The new background fields are obtained from integrating the new analysis
ensemble membersxa,j with the modelM as

xk+1
f,j = M(xk

a,j) for all j = 1, ..., k.

8
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New background error covariance matrix (Pf ). A new sample of background errors can be estimated as
the difference of the ensemble members from their mean for instance:

δj = xf − xf,j, j = 1, ..., k.

or, also as the differences between the ensemble members themselves:

δ̃j = xf,i − xf,l, i = 1, ..., k andl = 1, ..., k.

ThePf background error statistics needed for the ALADIN 3D-VAR run can be then computed by theFESTAT

program, which was developed at ECMWF and then adapted to ALADIN (available from Météo-France or the
Hungarian Meteorological Service).

5 Summary

In the present paper we showed the theoretical background and the practical realization of Ensemble
Transform Kalman Filter method as suggested by Sándor Kertész at the Hungarian Meteorological Service.
The big advantage of ETKF is that its application results time dependent background errors and also an
ensemble system at each analysis time without the replacement of the already existing data assimilation
method (e.g. 3D-VAR). The main difference between the computational time of EnKF and this kind of
realization of ETKF is the number of minimizations needed. Meanwhile in ETKF only one analysis step (e.g.
3D-VAR) is needed, in EnKF an analysis should be obtained from each background field (k altogether). On the
other hand, in ETKF we should runk + 1 SCREENINGs, which means that we could "only" save the time of
thek minimization steps (which is still meaningful). The heart of ETKF is the transformation matrix, which
should be computed in addition compared to EnKF on the other hand. However its derivation, is still less
computer intensive than a 3D-VAR minimization.

At the moment only the basic realization of ETKF is ready at HMS, we do not have any cycling yet and
therefore we are unable to show any results. Nevertheless, some open problems can be mentioned: How does
the sampling noise, related to the small size of ensemble, and the choice of the same lateral boundary
information effect the result obtained by ETKF? In order to answer these (and other) open issues, we plan to
implement a real cycling with ETKF and investigate the background error statistics with the help of
diagnostics.
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