Regional **C**ooperation for Limited Area Modeling in Central Europe

ACC ≩RD A Consortium for COnvection-scale modelling Research and Development

LACE verification activities

Authors: Doina-Simona Taşcu with contributions of LACE partners

OMS7

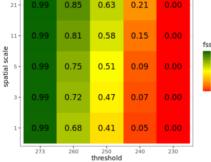
Hydrometeorological

.....

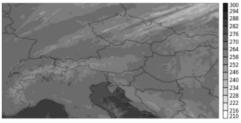
HARP usage @LACE

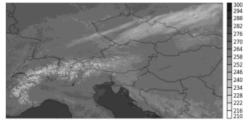
- Subjective verification approaches
- Model output post-processing
- Database of cases

HARP usage @Austria


Verification of simulated IR channels in HARP

- over Austria domain
- MSG 2 SEVIRI: Infrared 10.8 μm (Brightness Temperatures)
- AROME esuite simulated infrared channel


Score: Fraction Skill Score (FSS)


- Window sizes: 1, 3, 5, 11, 21
- Thresholds:
 - 273 K (0-degree Celsius)
 - 260 K (supercooled water droplets)
 - 250 K (convective initiation)
 - 240 / 230 K (overshooting tops)

fss AROME ESUITE 20230209 - 20230209 IR_108

2023/02/10 00:00 UTC obs

2023/02/09 15:00 UTC + 09 fct

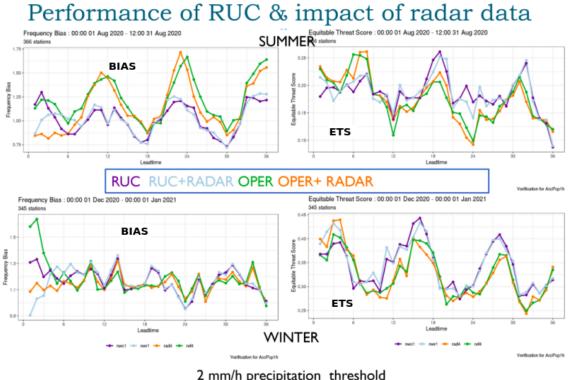
0.75

0.25

RSO METEC

HARP usage @Austria

Generation of a Fact Sheet based on model verification with HARP using Markdown

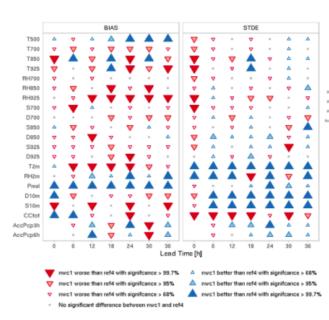

- provides an easy accessible and easy to understand evaluations of model performance
- fact sheets tailored to the needs of specific customer are created

Informationsblatt Verifikation und Performance der Wettermodelle	nort documentation about the NWP-models	Informationsblatt Verifikation und Performance der Wettermodelle Geosphere Austria 2023 01-18	ist die Verteilung der Niederschlagsintensität darzustellen. D.h. es zeigt, welche Niederschlagsbereiche ein Modell gut vorhersagt, oder ob es einen Bereich über- oder unterschätzt. Damit kann eine AUssage gemacht werden, ob das Modell eine nützliche und sinnvolle Vorhersage liefert.		
Geosphere Austria 2023-01-18	Für die Vorhersagen wird das von der ZAMG entwickelte Analyse- und Nowcastingsystem INCA (Integrated Nowcasting through Comprehensive Analysis) verwendet. Das Modell ermöglicht zeitlich und räumlich hochauflösende Analyse und Vorhersage für die		methods and interpretation of the scores Trefferquote - False Alarm und Hit Rate des Niederschlags		
Produktinformation	nächsten Stunden unter besonderer Berücksichigtung regionaler und kleinräumiger topographischer Effekte. Es liefert auf einem 1- km Raster stündlich aktualisierte Prognosen von Temperatur, Luffleuchte, Wind, Niederschlag, Das Ziel von INCA ist eine zeitlich und räumlich hochauflösende Analyse und Prognose des aktuellen atmosphärischen Zustandes im Novcasting. Nach 48 Vorhersagestunden geht die Prognose von INCA in die Prognose des Modells des ECMWF (European Center for Medium- Range Weather Forecast) über. Das ECMWF ist sonohl ein forschungsinstitut als auch Dienst, der u.a. globah enumerische Wettervorhersagen erstellt und anbietet. Für die Berechnung der Prognosen wird das am 0.25 Grad Gitter vorliegende Modell auf die INCA Auflösung von 1 km verfeinert. In diesem Bericht werden die Vorhersagen der beiden Modelle gegenübergestellt. Allgemein ist bei den berechneten Verfikationsmäßen zu beachten, dass es sich um eine Validierung an einem Punkt der Ort handelt. Wird ein Ereignis für eine Statione vorhersagest, aber an einer benachbarten Station beobachtet, wird die Vorhersage bestraft. Auch wenn die Distanz zwischen den beiden Punkten nur wenige Kilometer beträgt.	Produktinformation			
Trefferquote - relative Häufigkeit		Trefferquote - relative Häufigkeit			
Trefferquote - Niederschlagsverteilung		Trefferquote - Niederschlagsverteilung			
Trefferquote - False Alarm und Hit Rate des Niederschlags		Trefferquote - False Alarm und Hit Rate des	Figure 2: Hit Rate (h) und False-Alarm Rate (f) von Niederschlagsklassen (0-0.1, 0.1-1, 1-5, 5-20 und 20-50 mm/12h). <u>Bild zum Vergroßern anklicken</u> .		
Stationsauswahl - Niederschlag	Trefferquote - relative Häufigkeit	Niederschlags	In Abbildung 2 ist die Hit Rate (h) und False Alarm Rate (f) verschiedener Niederschlagsklassen dargestellt. Weiters werden die Stationen anhand der Höhenniveaus unterteilt. Unterschieden wird zwischen Stationen im Flachland (flat), im Gebirge (mountain)		
Modellperformance - Temperaturmaxima und Temperaturminima	Die Tabelle zeigt die relative Häufigkeit in Prozent (<u>sharpness</u>), mit der das Ereignis über einen bestimmten Zeitraum vorhergesagt wurde. Das Ereignis wird nicht direkt mit der Beobachtung verlfziert, sondern die Differenz zwischen Vorhersage und Beobachtung betrachtet. Anschließend wird die relative Häufigkeit berechnet, mit der diese Differenz von einer vorgegebenen Klasse abweicht. Diese Klasse wird als "Abweichung" in der Tabelle bezeichnet. Je höher der prozentuelle Wert, desto häufiger liegt die Differenz in der Klasse. Eine gute Prognose ist, die höchsten Ergebnisse in der obersten Klasse zu erreichen.	Stationsauswahl - Niederschlag	und in Tälern (Valley). Die Werte geben an, wie häufig die Vorhersage richtig liegt (Hit Rate). Diese ist perfekt bei einem Wert von 1. Die False Alarm Rate gibt an, wie oft eine Vorhersage fälschlicherweise ein Ereignis prognostiziert (False Alarm Rate). Eine Prognose ist perfekt bei einem Wert von 0.		

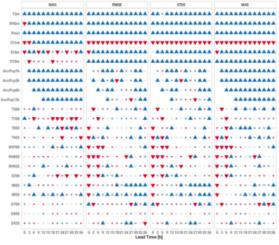
HARP usage @Slovenia

- automatic objective verification
- weekly and monthly scores
- traditional parameters

GeoSn



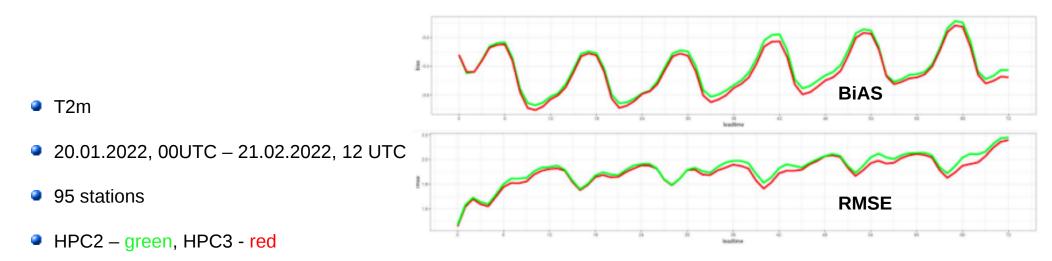
HARP usage @Slovenia


- automatic objective verification
- weekly and monthly scores
- scorecards

Performance of RUC

RUC (1.3 km) vs. OPER (4.4 km)

Czech Hudrometeorologica RUC (1.3 km) vs. OPER (4.4 km) April and May 2022

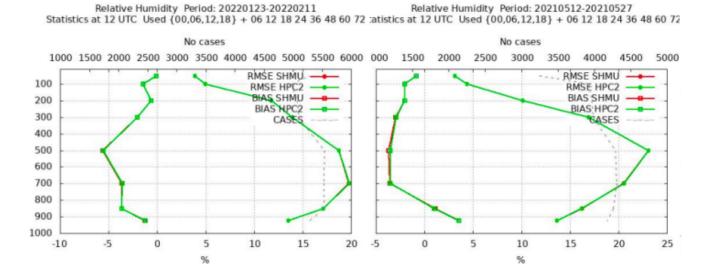

METEC

.....

ARSO METEO

HARP usage @Slovakia

Validation of HPC3 operational system vs HPC2



HARP usage @Slovakia

Validation of HPC3 operational system vs HPC2

GeoSp

METEO

ARSO METEO

Slovenia


- RH2m
- BIAS and RMSE
- 23.01.2022 11.02.2022 (left)
- 12.05.2021 27.05.2021 (right)

HARP usage @Slovakia

Validation of HPC3 operational system vs HPC2

- T850
- RMSE and BIAS
- 23.01.2022 11.02.2022 (left)
- 12.05.2021 27.05.2021 (right)

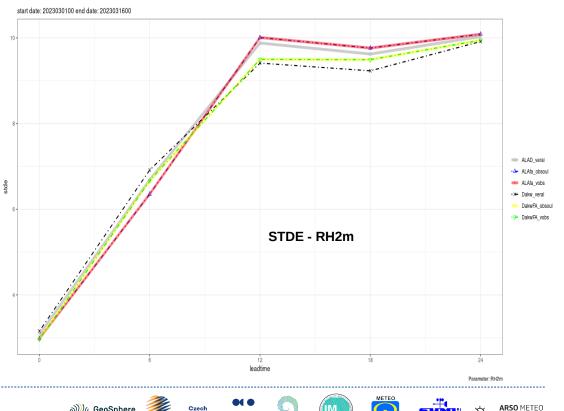
HARP usage @Slovakia

OBSOUL in HARP update - Martin Petráš and Alena Trojáková

two obsoul data format:
 1. GTS EU data: obsoul_1_xxxxxx_hu_YYYYMMDDHH
 2. Non GTS data (National data): obsoul_1_xxxxy_[hu,cz,sk,si,ro,pl,at,cr]_YYYYMMDDHH

Differences in structure between GTS and non-GTS formatting:

- specific station identifications (CZ,HU, ...) for non-GTS data
- GTS data contains SYNOP data with station IDs having only integers
- SHIP data in GTS obsoul files partially or fully string IDs
- non-GTS data less parameters (T2m,wind,RH2m...)
- GTS data more parameters, up to 6 parameters with not predefined order

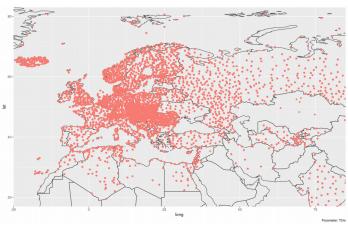


Slovenia

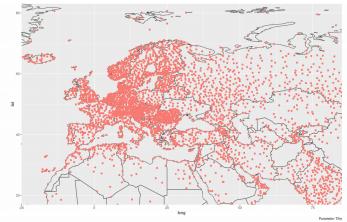
HARP usage @Slovakia

OBSOUL in HARP update - Martin Petráš and Alena Trojáková

- Compare verification scores
 - Compare verification scores using multiple setups:
 - Different observation sources:
 - vobs
 - obsoul
 - Verification tools:
 - Harp
 - Veral

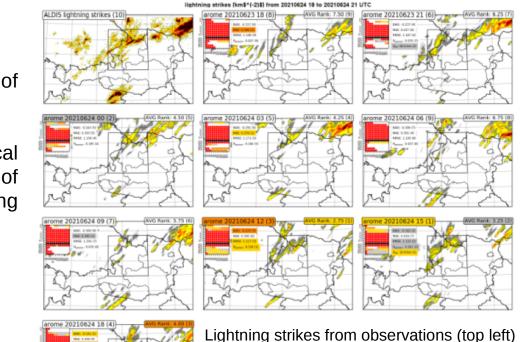


HARP usage @Slovakia

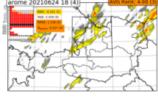

OBSOUL in HARP update - Martin Petráš and Alena Trojáková

- Quality control :
- □ writing/reading obsoul from SQLite
- $\hfill\square$ comparing station data from different sources

T2m obsoul



RSO METEO



Panelification @Austria

- extended to hail and lightning: good indicators of strong convection
- for lightning: MODIS-Data is read from a local database and converted into a grided field of lightning strikes and compared to the lightning density from AROME
- for hail: a threshold approach will be used

abining strikes firm"

Lightning strikes from observations (top left) and 9 different AROME-Aut runs for 2021-10-24 between 18 and 21 UTC over Upper Austria, units are given in strikes per km².

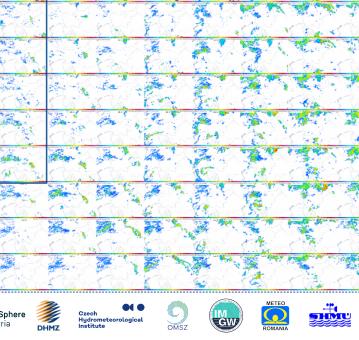
RSO METEO

Visualization of 2D vertical cross-sections in Python @Croatia

- a python-based verification dashboard started to be developed
- it enables interactive work (selection of location(s), score(s), etc.)
- ongoing work on the selection of verification measures and representative stations, which would be used to validate operational model configuration and postprocessing on a regular basis (e.g., monthly/yearly)
- work on methods for data quality control
- create an interactive system for real-time comparison of measured and modeled time series of near-surface parameters (python-based)

Subjective validation of 1.3 km RUC model @Slovenia

- to evaluate the quality of the 1.3 km model, especially to run consistency and the ability to simulate the (severe) weather events while they are in progress
- the main focus is on the development of the convection, particularly the onset of convection and the positioning of the convective systems
- to study the performance of the assimilation to capture the current ongoing convection activity by comparing two top row
- to study the consistency of the model from run to run by comparing each column individually



ARSO METEO

Subjective validation of 1.3 km RUC model @Slovenia Single convective storm (large hail) 13UTC 15UTC IIUTC 23UTC radar the procedure is to plot a time +lhseries of radar images in the top row +3h below that a large panel of ٩ many consecutive outputs the same time of validity +5h ۰. the lead time increases towards the bottom, in such view, an individual run lies on the diagonal

- the EMOS technique for global radiation the distribution of predictions was approximated with censored normal (CN) or censored logistic (CL) functions
- 31-day rolling training period
- 7 stations of OMSZ measuring network
- I1 members of AROME-EPS, 00 UTC, using nearest gridpoint approach
- the CRPS of the improved probabilistic forecast could be reduced by 16-18% with respect to the CRPS of the raw AROME-EPS (Schulz et al., 2021)
- CN-EMOS method proved to be numerically somewhat more stable

Schulz, B., El Ayari, M., Lerch, S., Baran, S., 2021: Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting. Sol. Energy 220, 1016–1031.

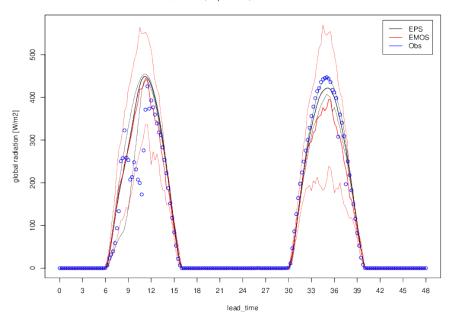
- also, a multilayer perceptron (MLP) machine learning method based on TN or LN distributions
- 3 wind farms observation in the NW Hungary and corresponding AROME-EPS forecasts at hub height (100m) at nearest grid points were used
- a 51-day long training period
- MLP was the most successful, with CRPS improved by 10-15% of the raw EPS (Baran and Baran, 2021)

Baran, S. and Baran, Á., 2021: Calibration of wind speed ensemble forecasts for power generation. Időjárás 125, 4.

- the ongoing work: on integrating the received code into the operating system
- the improved forecasts is produced daily: every station and every 15 minutes by determining 11 equal quantiles from the given distribution function
- each method handles each lead time independently

The running procedure consists of 3 steps:

- the collection of forecast data for the given day and observations
- the EMOS fitting and the MLP training run on a separate computers
- verification is done for the forecasts of the preceding day: some statistics are calculated for the previous period of about one week, and also a few simple meteograms and verification plots are produced to compare the improved forecast and the raw AROME-EPS.


ARSO METEC

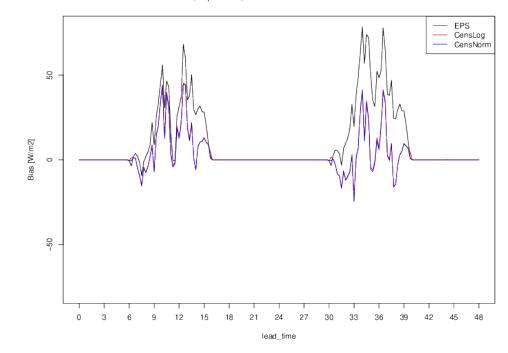
Machine learning post-processing methods on AROME-EPS forecasts @Hungary

Ensemble meteogram for radiation on 7 February 2023 based on raw AROME-EPS forecasts:

- ensemble mean in *black*
- si minimum and maximum in grey
- on CN-EMOS: ensemble mean estimated from the corrected distribution function with *thick red* line, upper and lower quantiles with *thin red lines*

descriptions with blue circles

CN EMOS Quantiles, Tapioszele, Fc init at 0 UTC 2023-02-07

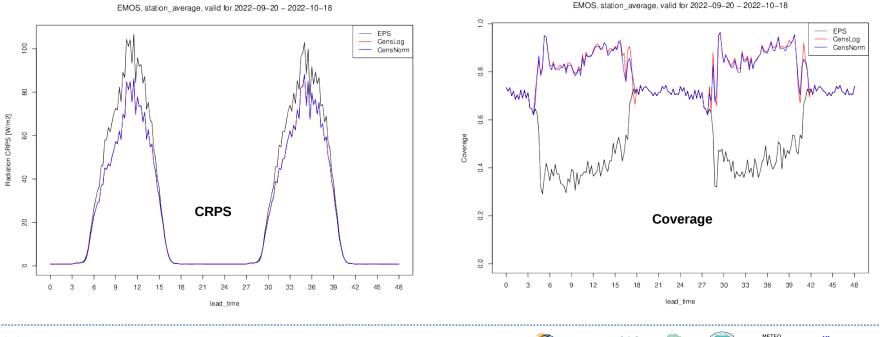


METEC

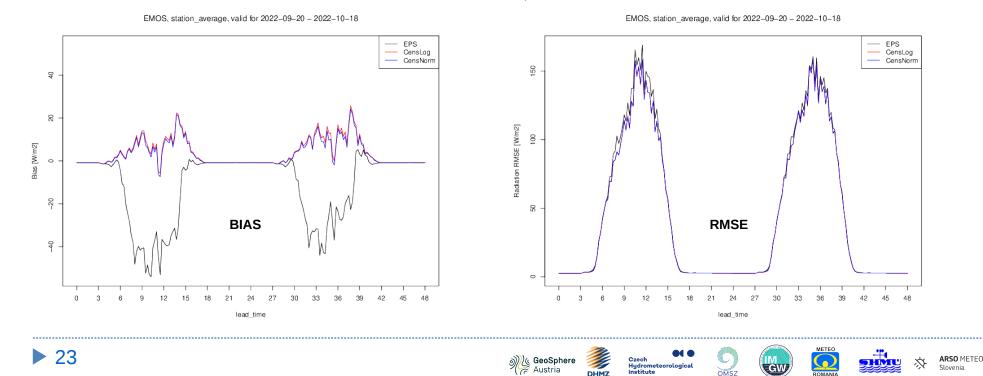
ARSO METEO

Machine learning post-processing methods on AROME-EPS forecasts@Hungary

Bias of ensemble mean for radiation:
29 January and 7 February 2023 based on raw AROME-EPS forecasts (*black*)
CN-EMOS (*blue*)
CL-EMOS (*red*).
for station of Tápiószele.

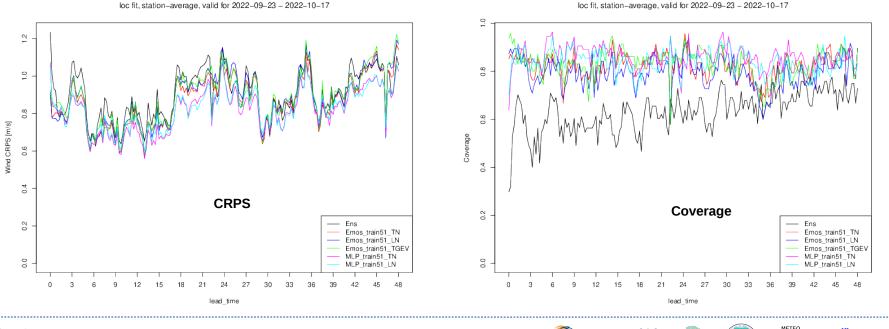

EMOS, Tapioszele, valid for 2023-01-29 - 2023-02-07

ARSO METEO Slovenia


Machine learning post-processing methods on AROME-EPS forecasts @Hungary

test was done on the current operational AROME-EPS which is downscaling of ECMWF-ENS Global radiation for 7 stations, 20.09.2022 - 18.10.2022

test was done on the current operational AROME-EPS which is downscaling of ECMWF-ENS Global radiation for 7 stations, 20.09.2022 - 18.10.2022

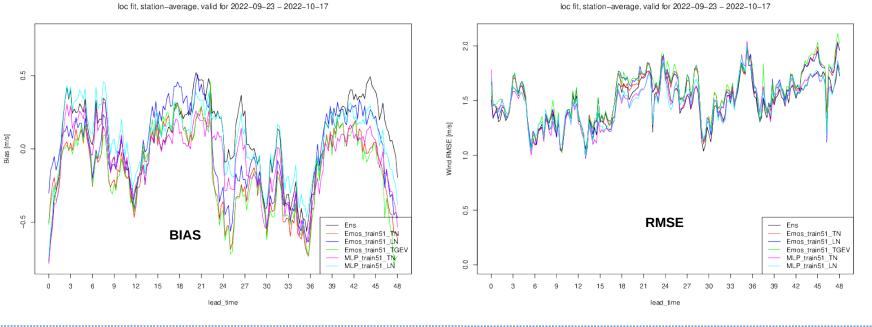


ARSO METEO Slovenia

Machine learning post-processing methods on AROME-EPS forecasts@Hungary

test was done on the current operational AROME-EPS which is downscaling of ECMWF-ENS

100m wind forecasts for 3 stations, 23.09.2022 - 17.10.2022



ARSO METEO

Machine learning post-processing methods on AROME-EPS forecasts@Hungary

test was done on the current operational AROME-EPS which is downscaling of ECMWF-ENS 100m wind forecasts for 3 stations, 23.09.2022 – 17.10.2022

loc fit, station-average, valid for 2022-09-23 - 2022-10-17

25

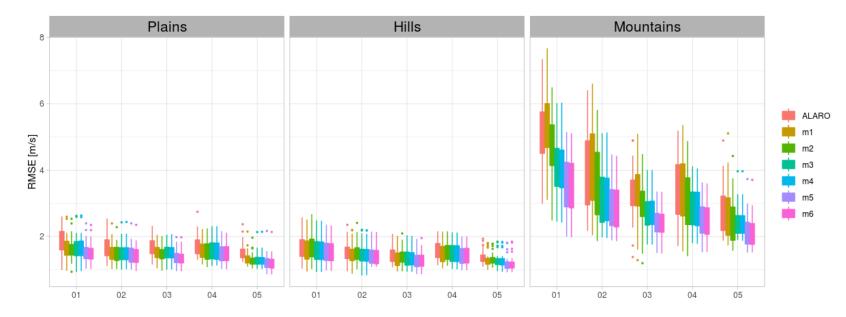
SO METER

Machine learning post-processing methods on AROME-EPS forecasts @Hungary

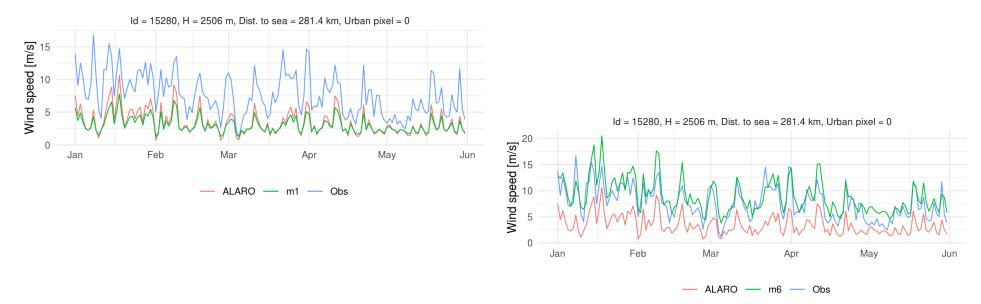
- in general, the operational AROME-EPS is underdispersive and biased, both features seem to be improved after the post-processing
- an improvement in CRPS does not mean an improvement in RMSE of ensemble mean to the same extent, i.e. end users should consider the probability information and not only EPS mean

- a post processing method of the model output was tested for wind speed forecast of ALARO GAM (Generalized Additive Models)
- several GAM models were defined: differ mostly in the predictors they use in the regression equation:
 - *m1* a simple regression model (one single predictor which wind speed simulated by ALARO)
 - *m2* takes into consideration the coordinates (latitude and longitude) of the point where is applied
 - *m3* includes the altitude of the station
 - *m4* includes the simulated wind direction
 - m5 adds the 24 hours lagged simulated wind speed
 - m6 takes into consideration two local characteristics: the distance to the Black Sea and the number of urban pixels within 3 km radius for the point considered

METEO


ARSO METEO

- All 6 models were applied for 2021 training period
- the wind speed estimation for the period January May 2022
- 157 meteorological stations in Romania


ARSO METEO

- the models show different results, depending on the month or altitude of the station
- improvements are more visible for mountain stations, mostly for models m5 and m6
- this result shows the significance of adding more predictors in the regression model

ARSO METEO Slovenia

- daily mean wind speed for station Vf. Omu (located at 2506 m altitude)
- model m1 shows very slight differences compared to ALARO in this case and both underestimate the real wind speed
- model m6 leads to wind speeds more closer to registered values

Database of cases

GeoSphere

Austria

🖀 > Data base of cases

Data base of cases

Idea is to have Data base for Cases studies. All suggestions and new cases are welcome.

Short description	Event date	Category	Country	name	Forecast & Report
EPS - Case studies report 2021	2021		А	Wastl Clemens	Report
Record rainfall in Italy, A-LAEF (case study)	04 October 2021		SK	Martin Belluš	Report
High spread and underestimation of 2m temperature over snow cover in case of the warm air advection	22 February 2021		SK	André Simon, Martin Belluš	Report
Temperature forecasts in very cold weather	12-13 February 2021		SK	André Simon	Report
False model advection of warm air over Bratislava	07 February 2021		SK	André Simon	Report

Regional Cooperation for Limited Area Modeling in Central Europe

Thank you for your attention.

ARSO METEO Slovenia