Regional Cooperation for Limited Area Modeling in Central Europe

Verification activities in RC-LACE

Doina-Simona Taşcu with contributions of RC LACE partners

- HARP implementation and verification for deterministic and probabilistic forecasts
- HARP linked to OPLACE database
- Multiple verification methods

Applications

- Post-processing of model output
- RC-LACE gitlab platform
- Databases of cases
- Trainings

ADSO METER

Austria

- Further work on Python-wrapper for HARP
- Python wrapper are now used for deterministic verification
- In addition to surface, the upper air verification with radiosondes is now included for deterministic verification of operational AROME-AUT and CLAEF-CTRL
- Verification of operational AROME-RUC implemented, only 4 runs per day are visualized on a regular basis
- Extraction of C-LAEF forecasts for HARP ported to ECMWF ecgate.

ARSO METEO

Austria

Temperature at 850hPa - Austrian radiosonde sites for AROME-AUT, C-LAEF and Member 1 of C-LAEF

10m Windspeed for selected AROME-RUC runs

ZAMG

Institute

Austria - HARP based scorecards

- Interface written to ZAMG-Verification tool
- HARP-scorecard extended to use spatial precipitation verification from ZAMG-Verification tool
- Some optical adaptions implemented

Hungary - first tests

- Ongoing work of testing HARP with radiosonde measurements
- netCDF observations were converted to the SQLite database
- a sample verification was made for the 11member AROME-EPS forecasts for Budapest station in June 2020

ARSO METER

Hungary - first tests

- Ongoing work of testing HARP with radiosonde measurements
- netCDF observations were converted to the SQLite database
- a sample verification was made for the 11member AROME-EPS forecasts for Budapest station in June 2020

Slovakia - HARP linked to OPLACE database (Ongoing)

Thanks to Andrew Singleton, the work of Martin Petras regarding the obsoul reading function was added to the development version of harpIO

The work of Martin is ongoing, taking into account the Alena Trojakova's proposals, to add:

# varno	o name	harp_name
79	RR1h	PE1
80	RR6h	PE6
81	Tmin	ТМ
82	Tmax	ТХ

Hungary - Validation of AROME-SEKF

- comparison of AROME-SEKF (Simplified Extended Kalman Filter) with AROME/HU operational version
- AROME-SEKF was applied in the test run for surface assimilation
- 1-month: 15.11 15.12.2021
- Subjective evaluation
- carried out by forecasters and model developers in interesting weather situations
- forecasters involved in doing differences between two model versions for synoptic hours (00, 06, 12 UTC)
- model developers made also subjective verification by ranking weather parameters (T2m, W10m, 10FG, PREC, cloudiness forecasts) from 1 to 5 (5 is the best forecast)

Hungary - Validation of AROME-SEKF

- comparison of AROME-SEKF (Simplified Extended Kalman Filter) with AROME/HU operational version
- AROME-SEKF was applied in the test run for surface assimilation
- 1-month: 15.11 15.12.2021
- Objective evaluation
- pointwise verification (Perl-based OVISYS verification system)
- RMSE, bias and other scores for different parameters:
- 💠 surface: MSLP, TCC, T2M, DewT2M, RH2M, W10M, 10FG
 - upper-air: T850, RH700, RH925, Z500 hPa, Prec12h, Prec24h

Hungary - Validation of AROME-SEKF

T2m (°C): 12 UTC on 14 December 2021, + 12 UTC

systematic underestimation for 2-meter temperature during test period by both model versions

temperature underestimation was especially large in the middle of the day; even greater when using Kalman filter

O METER

Hungary - Validation of AROME-SEKF

Snow depth (mm): 12 UTC on 14 December 2021, + 12 UTC

some fake snow persistence in December - partly related to overestimation of low-level cloud existence in some weather situations

ZAMG

Sunshine duration, 25.11.2021, 12 to 15 UTC

Austria - Panelification

- Verification against the INCA analysis (1 km gridded product)
- Refactoring of code to facilitate code extensions in the future
- Implementation of sunshine duration for panel tool
- Implementation of visualization of selected parameter (atmospheric and soil fields) for in-house monitoring

WG Bank: 2 50 (2 arome 20211125 09 (4 AVG Rank: 5.00 (6 INCA (romeruc 20211125 07 (2 AVG Rank: 4.00 (4) aromeruc 20211125 08 (5) AVG Rank: 4.50 (5) aromeruc 20211125 09 (6) AVG Rank: 6.00 (7) AROME-Aut and AROME-RUC 4320 10080 5760 10800 sunshine duration [s]

SO METER

Hungary - Post-processing of AROME and AROME-EPS (ongoing)

- motivated by the partners of OMSZ producing wind and solar energy
- the main objective: to improve the forecasts for global radiation and 100-meter wind speed
- to improve AROME 100-meter wind speed forecasts: are used 100-meter wind speed and wind direction, surface pressure and temperature
- to improve AROME radiation forecasts: are used temperature and global radiation
- observation from wind and solar energy farms (100-meter wind and radiation) and OMSZ
- two types of ML techniques:
- combined convolutional and artficial/feedforward neural networks
- convolution autoencoder
- \Rightarrow time period: 17.04 31.12.2020, with different training period
- the autoencoder showed better results for 100-meter wind speed forecasts, but poor results for radiation

Hungary - Post-processing of AROME and AROME-EPS (ongoing)

Multiple methods were developed to improve AROME-EPS *100-meter wind speed forecasts* (Baran and Baran, 2021):

- EMOS (ensemble model output statistics) models
- MLP (multilayer perceptron neural network) approach
- wind speed observations from wind farms and ensemble forecasts
 the training was conducted over a 51-day rolling training period
- EMOmodels were tested applying several predictive distributions: truncated normal (TN), log-normal (LN), truncated generalized extreme value (TGEV)
- data for all points from the training period are considered together providing a single set of EMOS parameters or the model was trained separately for the different locations
- the best result, 12% reduction in CRPS, is obtained with truncated normal distribution supported with multilayer perceptron method

Baran, S. and Baran, Á., 2021: Calibration of wind speed ensemble forecasts for power generation. Időjárás 125, 4, 609–624. DOI:

SO METEC

Hungary - Post-processing of AROME and AROME-EPS (ongoing)

Mean CRPS of AROME-EPS 100-meter wind speed forecasts for the raw ensemble (grey) and for the ensemble post-processed with different methods.

ZAMG

Hungary - Post-processing of AROME and AROME-EPS (ongoing)

Multiple methods were developed to improve AROME-EPS *global radiation forecasts* (Baran and Baran, 2021):

EMOS models: censored logistic (CL0) and censored normal (CN0) predictive distributions

- a 31-day rolling training period
 input: radiation ensemble forecasts and observations from OMSZ
- the methods decrease the CRPS with 10-15 % and increase the ensemble spread reducing the radiation underestimation

lenu
veather
oject information
epository
les
its
S
0
5 0
ance
tries

Ongoing

🔏 Snippets

≪ Collapse sidebar

https://www.rclace.eu/data-base-of-cases

> Data base of cases

Data base of cases

Idea is to have Data base for Cases studies. All suggestions and new cases are welcome.

Short description	Event date	Category	Country	name	Forecast & Report
EPS - Case studies report 2021	2021		A	Wastl Clemens	Report
Record rainfall in Italy, A-LAEF (case study)	04 October 2021		SK	Martin Belluš	Report
High spread and underestimation of 2m temperature over snow cover in case of the warm air advection	22 February 2021		SK	André Simon, Martin Belluš	Report
Temperature forecasts in very cold weather	12-13 February 2021		SK	André Simon	Report
False model advection of warm air over Bratislava	07 February 2021		SK	André Simon	Report
Forecasting fog and low cloudiness	24-11-2020		SK	NWP Team SHMÚ	Report
FACRAF tuning for the 4.5 km resolution ALARO SHMÚ	2020		SK	André Simon	Report
Odd outflows over water surfaces in non hydrostatic ALARO/AROME models	2019		SK, CZ	André Simon (Martin Dian, Radmila Brožková & others)	Report
Overestimation of minimum temperature during summer 2009	summer 2009		CZ, SI	Alena Trojakova	<u>Report</u> , <u>A</u> , <u>B</u>
Period with strongly overestimated convective activity in central Europe	2007-05-23/27		central Europe	Ján Mašek	Report
Large positive bias in very cold condition in Slovakia	2006 Jan/Feb		SK	Mária Derková	Report

Czech

Trainings

- Challenges and troubleshooting about installation of harp tool 9th of May 2022
- An introduction to GitHub/GitLab
- How to generate an integration domain and how to create the clim files
- An overview of the model compilation

Regional Cooperation for Limited Area modeling in Central Europe		Search	Q Ø
	A Notification	Private messages	Mirela.Niculae 🔻
cy43t2_bf11 - Auxiliary libraries Post Reply ↑ F → Search this topic Q ◊			1 post • Page 1 of 1
cy43t2_bf11 - Auxiliary libraries li by admin + Mon Mar 07, 2022 10.06 pm The short compilation notes for libraries zlib 1.2.11	1 66	admin Site Admin Posts: 680 Joined: Mon Jun 02, 20 Contact: 💬	08 9:24 am
CODE:SELECTALL # remove static if you which to also build shared libraries install_dir_opt/zllb-1.2.11 CCricc ./configure <static>prefix=\${install_dir} make make make install</static>			
szip 21.1 CODE: SELECT ALL			
<pre># removedisable-shared if you which to also build shared libraries install_dir=/opt/szlp.2.1.1 Cocise -/conjugate <disable-shared>prefix=\$(install_dir) make make install</disable-shared></pre>			

oldrich.spaniel@shmu.sk

ics bator CODE: SELECT ALL -L/opt/lib -lrgb -lbufr -lgribex -lnetcdff -lnetcdf -leccodes f90 -leccodes \ -lhdf5hl_fortran -lhdf5_hl -lhdf5_fortran -lhdf5 -lsz -lz -lopenblas -lcurl \ -libmdummy -lnaglitedummy -lwamdummy -loasisdummy -lfdbdummy ics_blend CODE: SELECT ALL -L/opt/lib -lgribex -leccodes_f90 -leccodes \ -libmdummy -lnaglitedummy -lwamdummy -loasisdummy -lfdbdummy ics blendsur CODE: SELECT ALL -L/opt/lib -lgribex -leccodes_f90 -leccodes \ -libmdummy -lnaglitedummy -lwamdummy -loasisdummy -lfdbdummy ics_ioassign CODE: SELECT ALL -L/opt/lib -libmdummy -lnaglitedummy -lwamdummy -loasisdummy -lfdbdummy ics lfitools CODE: SELECT ALL -L/opt/lib -lgribex -leccodes_f90 -leccodes \ -libmdummy -lnaglitedummy -lwamdummy -loasisdummy -lfdbdummy ics masterodb CODE: SELECT ALL -L/opt/lib -lbufr -lgribex -lnetcdff -lnetcdf -leccodes f90 -leccodes \ -1hdf5hl_fortran -1hdf5_hl -1hdf5_fortran -1hdf5 \ -lsz -lz -lopenblas -lcurl -libmdummy -lnaglitedummy -lwamdummy -loasisdummy -lfdbdummy ics odbtools CODE: SELECT ALL

-L/opt/lib -lbufr -lgribex -lnetcdff -lnetcdf -leccodes_f90 -leccodes \ -1hdf5hl fortran -1hdf5 hl -1hdf5 fortran -1hdf5 -1sz -1z -1curl \ -libmdummy -lnaglitedummy -lwamdummy -loasisdummy -lfdbdummy

OMSZ

Regional Cooperation for Limited Area Modeling in Central Europe

Thank you for your attention.

