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1 Brief overview of the new developments

For the time being ALARO-0 developments in radiative scheme cover 3 areas:

1. Improved parameterization of cloud optical properties.

Old ACRANEB scheme did not assume dependency of cloud absorption coefficient
kabs
l|i , scattering coefficient kscat

l|i and asymmetry factor gl|i on liquid/ice water
content ρl|i. Moreover, only mean saturation effect was taken into account for
clouds. With introduction of prognostic cloud water and ice it became highly
desirable to relax these two simplifications. In ALARO-0 dependency of cloud
optical properties on cloud water content ρl|i as well as non-local saturation effect
depending on cloud thickness and geometry are included. Parameterization scheme
was developed and tuned in idealized framework, using experimental spectral
data for 7 water and 16 ice clouds. Cloud optical saturation is assumed to be
independent from gaseous one.

2. Introduction of Voigt effect in computation of gaseous transmissions.

ACRANEB scheme assumes only 3 radiatively most important atmospheric gases
(CO2, H2O and O3). In original formulation equivalent band widths for these
gases were computed using Malkmus band model. This model assumes Lorentz
shape of absorption lines, caused by collision broadening. More realistic line
shape is described by Voigt profile, which takes into account also Doppler
broadening. Generalization of Malkmus formula in order to accommodate
Voigt effect is therefore important for improving gaseous transmissions in upper
atmosphere, where Doppler broadening becomes dominant process due to less
frequent molecular collisions. But since it leads to rather expensive expression
for equivalent band width as a function of absorber amount, there are two
implementations in ALARO-0 – exact and approximate. In latter case the most
expensive term is replaced by estimate of its global average.

3. New statistical model for bracketting technique in the NER (Net Exchanged Rate)
formalism.

Bracketting technique is used for better estimation of saturated layer optical
thicknesses in thermal band, leading to more realistic energy exchanges due to
absorption–emission. It is based on the fact that in gas-only atmosphere apparent
optical thickness of given layer decreases with the distance from which the layer
is viewed. Maximum optical thickness is obtained when the layer is viewed from
its interface, minimum one when it is viewed either from surface or from the top
of atmosphere. Actual value for any exchange lies between these two extremes
and can in principle be obtained by interpolation with weight 0 ≤ α ≤ 1 (where 0
corresponds to minimum and 1 corresponds to maximum optical thickness).
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In NER formalism primary exchanges (i.e. cooling to space, exchange with surface
and exchange with adjacent layers) are computed as accurately as possible, and
the treatment of remaining exchanges is simplified. Accurate computation of all
exchanges is extremely costly (it requires evaluation of optical thicknesses for each
pair of layers), but it enables to get reference solution which can be used offline
for finding optimal interpolation weights α for secondary exchanges. It was seen
that α increases in lower atmosphere as well as in the regions with temperature
inversion.

In the first version, interpolation weight α was constructed as 2-parametric fit
depending on height (via σ-coordinate p/pS) and atmospheric stability (given
by vertical gradient of potential temperature). Drawback of this simple fit
was no vertical dependency of sensitivity to atmospheric stability, which led
to slight problem in stratosphere. Problem was eliminated by introducing
more sophisticated 6-parametric fit of α, which enables different treatment of
tropospheric and stratospheric inversions. It was also recognized that α fits
must be retuned more towards ‘distant’ (i.e. minimal) exchanges when the exact
treatment of exchange between adjacent layers is turned on. This is especially true
at the edges of atmosphere.

2 Basics of ACRANEB radiative transfer scheme

ACRANEB is an economical radiative transfer scheme which takes into account effect of
relevant atmospheric gases, aerosols and clouds, with elaborated treatment of radiative
saturation and multiple scattering. Due to efficiency reasons it splits electromagnetic
spectrum only in two bands – solar and thermal. Even if radiative transfer in both
bands is driven by the same fundamental principles, each band has its specificities. In
solar band it is presence of direct flux (unscattered parallel radiation from the Sun) and
absence of atmospheric emission. On the contrary, in thermal band direct flux is absent
and atmospheric and surface emissions play an important role.

Radiative transfer equation used in ACRANEB is based on several simplifying
assumptions:

• Each column is treated as plane parallel atmosphere split to J homogeneous layers.
There is no lateral exchange with neighbouring columns.

• Diffuse fluxes are hemispheric constant, i.e. intensity (or radiance) I has the form:

I(µ) =

{

I+; µ < 0
I−; µ > 0

µ = cos θ

A
A
A
A
A
AU

θ

Quantity µ denotes cosine of zenithal angle θ, it is measured positively downwards
(µ = 1 points to nadir, µ = −1 points to zenith). Assumption of horizontal
homogenity implies no dependency on azimuthal angle.

• Dependency of phase function P on scattering angle Θ is linear in cosΘ, with
additional Dirac δ-treatment of forward scattering peak:

P (cosΘ) = 2fδ(cosΘ− 1) + (1− f)

(

1 + 3
g − f

1− f
cosΘ

)
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Quantity g is asymmetry factor and f is relative strength of forward δ-peak.
In ACRANEB scheme it is chosen as f = g2. This choice assures that second
moment of phase function P equals to that of Henyey-Greenstein phase function
with the same asymmetry factor g (Henyey-Greenstein phase function is often used
as 1-parametric approximation for Lorentz-Mie scattering).

For gases alone δ-scaling is not active, since Rayleigh scattering in forward and
backward directions is symmetric (g = 0). This implies f = 0 and P = 1, i.e.
Rayleigh scattering is approximated by isotropic phase function.

• Each layer is divided to clear sky and cloudy parts which are extending vertically
through the whole layer. Lateral exchange between these two parts does not exist.

• Cloud overlaps between adjacent layers can be either random (LRNUMX=.FALSE.)
or maximum (LRNUMX=.TRUE.).

When mentioned approximations are applied on fundamental equation of radiative
transfer, they lead to following δ-two stream system:

dF ↑

dδ
= 2[1−$(1− β̄)]F ↑ − 2$β̄F ↓ − 2π(1−$)B(T )−$β(µ0)

S

µ0

dF ↓

dδ
= 2$β̄F ↑ − 2[1−$(1− β̄)]F ↓ + 2π(1−$)B(T ) +$[1− β(µ0)]

S

µ0
dS

dδ
= −

S

µ0

Here S denotes direct flux (unscattered parallel radiation coming from the Sun), F ↑ and
F ↓ are upward and downward diffuse fluxes, B(T ) is intensity of blackbody radiation,
δ is optical depth measured from top of atmosphere downwards, $ is single scattering
albedo, β̄ is backscatter fraction for diffuse fluxes and β(µ0) is upscatter fraction for
direct flux with µ0 being cosine of solar zenithal angle:

dδ = ρr(k
abs + kscat) dz β(µ0) =

1

2
−

3

4
·

g

1 + g
µ0

$ =
kscat

kabs + kscat
β̄ =

∫ 1

0

β(µ) dµ =
4 + g

8(1 + g)

Density ρr refers to radiatively active matter (gases, aerosols or clouds). Coefficients
kabs, kscat have units m2 kg−1. In model, however, they are divided by gravity
acceleration so that units change to Pa−1.

Because of Dirac δ-treament of forward scattering peak, coefficients kabs, kscat and
derived quantities occuring in δ-two stream system are rescaled correspondingly:

kabs 7→ kabs dδ 7→ (1−$f) dδ

kscat 7→ (1− f)kscat $ 7→
1− f

1−$f
$

This transformation is based on scaling invariance of radiative transfer equation. In order
to remain valid also in presence of direct flux, definition of this flux must be slightly
modified: direct flux scattered in forward direction (Θ = 0) is assumed to remain direct,
instead of being converted to diffuse flux. Even with this modification scaling invariance
holds only approximately (it is exact for µ0 =

1

2
).
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Obtained δ-two stream system can be written in more compact form. For example, in
solar band one neglects emission term containing B(T ) and defines auxiliary quantities
α1, . . . , α5:

α1 = 2[1−$(1− β̄)] α3 = $β(µ0) α5 =
1

µ0
α2 = 2$β̄ α4 = $[1− β(µ0)]

With these notations system can be rewritten into the form:

d

dδ





F ↑

F ↓

S



 =





α1 −α2 −α3α5
α2 −α1 α4α5
0 0 −α5



 ·





F ↑

F ↓

S





For homogeneous layer j coefficients α1j , . . . , α5j do not depend on optical depth δ
and the system can be integrated analytically, giving linear relation between incoming
and outgoing fluxes:





SB
F ↓
B

F ↑
T





j

=





a1 0 0
a2 a4 a5
a3 a5 a4





j

·





ST
F ↓
T

F ↑
B





j

Subscripts B and T stand for layer bottom and top. Analytical expressions for
transmissivities a1, a2, a4 and reflectivities a3, a5 can be found e.g. in [1].

Slicing atmosphere into J homogeneous layers and equating fluxes outgoing from
given layer to fluxes entering neighbouring layers is referred to as adding method. It
leads to the linear system of 3J equations for 3J+3 unknowns (in solar band). Matrix of
the system has band structure with 5 non-zero diagonals. In order to close the system,
3 additional equations are needed. These come from boundary conditions:

1. prescribed direct flux S at the top of atmosphere

2. zero downward diffuse flux F ↓ at the top of atmosphere

3. reflection condition at the Earth’s surface (with A(µ0) and Ā being surface albedos
for direct and diffuse fluxes):

F ↑
surf

= A(µ0)Ssurf + ĀF ↓
surf

Thanks to band matrix system can be solved very efficiently, with cost being proportional
to J . In the presence of cloudiness procedure becomes more complicated, but the basic
principle of adding remains. One must assume two sets of fluxes – first in clear sky part,
second in cloudy part of the layers. At layer interfaces fluxes from both parts must be
redistributed according to chosen cloud overlapping assumption.

All what was said so far is valid only for monochromatic computations or in grey
body case (optical properties independent on wavelength). Main problem in ACRANEB
scheme comes from the use of wide spectral intervals. Gaseous absorption lines prevent
the use of grey body approximation even for relatively narrow spectral bands. In
broadband approach, grey body approximation loses its validity also for clouds. Problem
is that dependency of transmissivities and reflectivities on coefficients kabs, kscat and g
is highly nonlinear, so that averaged values ā1, . . . , ā5 can differ considerably from
values diagnosed from averages kabs, kscat and ḡ (this is especially true for large optical
depths). Moreover, averaging procedure depends on spectral composition of fluxes,
which in turn depends on photon paths influenced by multiple scattering. For these
reasons broadband approach requires parametrization of radiative saturation for gases
and clouds. Such parameterization usually consists of two parts:
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1. Fitting of saturated broadband coefficients kabs, kscat and g to values obtained by
very precise and costly wavelength by wavelength computations. For gases these
computations are usually done in idealized non-scattering case.

2. More ad hoc treatment which should roughly account for the effect of multiple
scattering.

3 Localization of the code

All concerned pieces of code are related through the following calling tree:

APLPAR

|

ACRANEB (clear sky fluxes)

| |

| AC_CLOUD_MODEL

|

ACNEBN

|

ACRANEB (full computation including clouds)

|

AC_CLOUD_MODEL

Radiative fluxes are computed in ACRANEB, which is called from two places in APLPAR.
First call is invoked only when clear sky fluxes are asked. Second call is placed after
cloud fraction PNEB and specific mass of cloud water PQLI and cloud ice PQICE were
diagnosed in ACNEBN. ACRANEB calls new subroutine AC_CLOUD_MODEL, which determines
cloud optical properties. Call of this subroutine in clear sky case is useless.

Before the first call to ACRANEB, vertical profiles ZMAN and ZMAK are precomputed in
APLPAR. They are passed to ACRANEB where they are used to compute statistical weights
ZMIXP, needed for bracketting technique in NER formalism.

4 Description of changes

4.1 Improved cloud optical properties

Concerned subroutines:

APLPAR

ACRANEB

AC_CLOUD_MODEL

Driving logical keys:

LCLSATUR – activates cloud saturation and dependency of kabs
l|i , kscat

l|i and gl|i on ρl|i

Changes in APLPAR:

Array PR (gas constant of air R) is passed to ACRANEB.
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Changes in ACRANEB:

At the very beginning of ACRANEB call to AC_CLOUD_MODEL was inserted. New input
argument PR had to be introduced, since it is needed in AC_CLOUD_MODEL to diagnose
air density ρ and to convert specific mass of cloud water and ice ql|i to corresponding
density ρl|i. Subroutine AC_CLOUD_MODEL returns 2D arrays with optical properties of
ice and liquid clouds, dimensioned as (KLON,KLEV):

ZBSF{S,T}{I,N} – back scatter fraction β̄ [1]
ZEOA{S,T}{I,N} – absorption coefficient kabs [Pa−1]
ZEOD{S,T}{I,N} – scattering coefficient kscat [Pa−1]
ZUSA{I,N} – coefficient a for computing upscatter fraction β(µ0) [1]
ZUSB{I,N} – coefficient b for computing upscatter fraction β(µ0) [1]

S,T stands for solar and thermal band, while I,N denotes ice and liquid clouds (letter N
comes from French ‘nuage’).

In old version of ACRANEB variables ZEO1T{I,N}, ZEO2T{I,N} (coefficients α1, α2)
did not depend on location and were evaluated directly from scalar namelist values
BSFT{I,N}, EOAT{I,N} and EODT{I,N}. This is no more true, now they must be
precomputed as 2D arrays:

DO JLEV=KTDIA,KLEV

DO JLON=KIDIA,KFDIA

ZEO2TI(JLON,JLEV)=2._JPRB*ZBSFTI(JLON,JLEV)*ZEODTI(JLON,JLEV)

ZEO2TN(JLON,JLEV)=2._JPRB*ZBSFTN(JLON,JLEV)*ZEODTN(JLON,JLEV)

ZEO1TI(JLON,JLEV)=ZEO2TI(JLON,JLEV)+2._JPRB*ZEOATI(JLON,JLEV)

ZEO1TN(JLON,JLEV)=ZEO2TN(JLON,JLEV)+2._JPRB*ZEOATN(JLON,JLEV)

ENDDO

ENDDO

Later in thermal computations these arrays are used to update values ZEO1, ZEO2 in
order to get final layer quantities α1∆δ, α2∆δ for gases + aerosols + liquid clouds + ice
clouds:

ZEO1=ZEO1+ZEO1TN(JLON,JLEV)*(PDELP(JLON,JLEV)*ZQLI(JLON,JLEV))&

&+ZEO1TI(JLON,JLEV)*(PDELP(JLON,JLEV)*ZQICE(JLON,JLEV))

ZEO2=ZEO2+ZEO2TN(JLON,JLEV)*(PDELP(JLON,JLEV)*ZQLI(JLON,JLEV))&

&+ZEO2TI(JLON,JLEV)*(PDELP(JLON,JLEV)*ZQICE(JLON,JLEV))

In solar computations upscatter fractions ZUS{I,N} are no longer only functions
of geographical location, but via coefficients ZUSA{I,N} they depend also on vertical
level (coefficients ZUSB{I,N} are set to zero in AC_CLOUD_MODEL, but they were kept
for generality). This is why they are diagnosed directly inside main JLEV, JLON loop,
together with quantities ZEO1S{I,N}, ZEO2S{I,N}:

ZEO2SN=2._JPRB*ZBSFSN(JLON,JLEV)*ZEODSN(JLON,JLEV)

ZEO2SI=2._JPRB*ZBSFSI(JLON,JLEV)*ZEODSI(JLON,JLEV)

ZEO1SN=ZEO2SN+2._JPRB*ZEOASN(JLON,JLEV)

ZEO1SI=ZEO2SI+2._JPRB*ZEOASI(JLON,JLEV)

ZEO1=ZEO1+ZEO1SN*(PDELP(JLON,JLEV)*ZQLI(JLON,JLEV))&

&+ZEO1SI*(PDELP(JLON,JLEV)*ZQICE(JLON,JLEV))

ZEO2=ZEO2+ZEO2SN*(PDELP(JLON,JLEV)*ZQLI(JLON,JLEV))&

&+ZEO2SI*(PDELP(JLON,JLEV)*ZQICE(JLON,JLEV))

...
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ZEOSN=ZEODSN(JLON,JLEV)+ZEOASN(JLON,JLEV)

ZEOSI=ZEODSI(JLON,JLEV)+ZEOASI(JLON,JLEV)

ZEO=ZEO+ZEOSN*(PDELP(JLON,JLEV)*ZQLI(JLON,JLEV))&

&+ZEOSI*(PDELP(JLON,JLEV)*ZQICE(JLON,JLEV))

...

ZUSN=(0.5_JPRB+ZUSAN(JLON,JLEV)*ZMU0(JLON))/&

&(1._JPRB+ZUSBN(JLON,JLEV)*ZMU0(JLON))

ZUSI=(0.5_JPRB+ZUSAI(JLON,JLEV)*ZMU0(JLON))/&

&(1._JPRB+ZUSBI(JLON,JLEV)*ZMU0(JLON))

ZEO3=(ZEO3/ZMU0IC+ZUSN*((PDELP(JLON,JLEV)&

&*ZQLI(JLON,JLEV))*ZEODSN(JLON,JLEV))&

&+ZUSI*((PDELP(JLON,JLEV)&

&*ZQICE(JLON,JLEV))*ZEODSI(JLON,JLEV)))*ZMU0IN

ZEO4=(ZEO4/ZMU0IC+(1._JPRB-ZUSN)*((PDELP(JLON,JLEV)&

&*ZQLI(JLON,JLEV))*ZEODSN(JLON,JLEV))&

&+(1._JPRB-ZUSI)*((PDELP(JLON,JLEV)&

&*ZQICE(JLON,JLEV))*ZEODSI(JLON,JLEV)))*ZMU0IN

ZEO5=ZEO*ZMU0IN

In given piece of code it can also be seen how variables ZEO1, . . . , ZEO5 and ZEO are
updated in order to get final layer quantities α1∆δ, . . . , α5∆δ and ∆δ, valid again for
gases + aerosols + liquid clouds + ice clouds.

Namelist variables EOA{S,T}{I,N}, EOD{S,T}{I,N}, BSF{S,T}{I,N}, USA{I,N} and
USB{I,N} from module YOMPHY3 were removed from ACRANEB. They are still needed in
AC_CLOUD_MODEL.

Design of AC_CLOUD_MODEL:

AC_CLOUD_MODEL is a new subroutine used for computation of cloud optical properties.
For the case LCLSATUR=.FALSE. it reproduces old computation by setting output arrays
to constant namelist values:

DO JLEV = KTDIA, KLEV

DO JLON = KIDIA, KFDIA

! absorption coefficient

PEOASI(JLON, JLEV) = EOASI

...

! scattering coefficient

PEODSI(JLON, JLEV) = EODSI

...

! back scatter fraction

PBSFSI(JLON, JLEV) = BSFSI

...

! coefficients for computation of upscatter fraction

PUSAI (JLON, JLEV) = USAI

...

ENDDO

ENDDO

Rest of the subroutine deals with the new cloud treatment (LCLSATUR=.TRUE.). It
is designed in a modular way which enables easy generalization to more than 2 spectral
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bands (all spectral computations are inside JB loop running through spectral bands).
The only restriction is given by output arrays explicitly divided to solar and thermal
quantities. This was necessary for compatibility with current ACRANEB code.

Quantities common for both spectral bands are precomputed outside of JB loop.
These are geometry factors needed for computation of effective optical depth, and scaled
liquid/ice water content used for Pade fits of coefficients kabs

l|i , kscat
l|i and gl|i. Geometry

factors f(nj , nk) are stored in array ZGEOM and they depend on cloud fraction n at levels
j and k:

f(nj , nk) =











(nk)
p ; random overlaps

min

[

1,

(

nk
nj

)p]

; maximum overlaps
j 6= k

f(nj , nk) = 1 j = k

Exponent p is empirical tuning factor given via namelist variable REXP_NEB. For p = 1
factor f(nj , nk) can be interpreted as fraction of cloud layer j overlapped by cloud
layer k. Idealized tests showed that optimal value of p is around 8, which is default.

Scaled liquid/ice water content Z{L,I}WC1 is diagnosed from air density ZRHO

and specific mass of liquid/ice inside the cloud PQ{L,I}. In order to save some
exponentiations, computation is done only if given layer contains cloud water/ice, which
is indicated by logical array LLQ{L,I} (some of subsequent code examples will be
restricted to liquid phase L):

IF ( LLQL(JLON, JLEV) ) THEN

ZLWC1(JLON, JLEV) = (ZRHO*PQL(JLON, JLEV))**FCM_N_L

ELSE

ZLWC1(JLON, JLEV) = 0._JPRB

ENDIF

Scaling exponents FCM_N_{L,I} had to be introduced in order to ensure sufficient
accuracy of subsequent Pade fits. Without suitable scaling, order of the fits for some
quantities would have to be higher than (3, 3), which would be difficult to manage since
there must not be positive roots in denominator.

Loop through spectral bands follows. First it fits scaled coefficients kabs
l|i , kscat

l|i and

gl|i to scaled liquid/ice water content ρl|i using Pade approximants of the form:

y(x) =
p0 + p1x+ p2x

2 + p3x
3

1 + q1x+ q2x2 + q3x3

Fitting is done in private subroutine FIT1, which uses Pade coefficients pi and qi stored
in arrays FCM_P_{A,D,G}{L,I} and FCM_Q_{A,D,G}{L,I} (A,D,G stands for absorption
coefficient kabs, scattering/diffusion coefficient kscat and asymmetry factor g). They are
dimensioned (N_SPBAND,0:3) and (N_SPBAND,1:3), where first index denotes spectral
band (1 – solar, 2 – thermal) and second index denotes order of Pade term.

Dependency of coefficients kabs
l|i , kscat

l|i and gl|i on liquid/ice water content ρl|i was
derived from experimentally measured cloud data. However, direct use of asymmetry
factor g obtained in this way lead to overestimation of cloud albedo in real case
experiments. Possible reason might be complex geometry and inhomogenity of real
clouds, which probably leads to higher transmissivity and smaller reflectivity when
compared to idealized plane parallel case. Therefore, it was decided to enhance forward
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scattering by reducing 1 − g to 80% of its original value. Pade fits provide already
modified value of asymmetry factor g.

After fitting, arrays ZEO{A,D}{L,I} are unscaled using exp function and divided by
gravity acceleration, in order to convert units of kabs

l|i , kscat
l|i from m2 kg−1 to Pa−1. At

the same time, asymmetry factor ZG{L,I} is unscaled using tanh type function which
guarantees result from interval (0, 1):

IF ( LLQL(JLON, JLEV) ) THEN

ZEOAL(JLON, JLEV) = EXP(ZEOAL(JLON, JLEV))*ZRRG

ZEODL(JLON, JLEV) = EXP(ZEODL(JLON, JLEV))*ZRRG

ZGL (JLON, JLEV) = &

& 1.0_JPRB/( 1.0_JPRB + EXP(-2.0_JPRB*ZGL(JLON, JLEV)) )

ELSE

ZEOAL(JLON, JLEV) = ZDRYEOAL

ZEODL(JLON, JLEV) = ZDRYEODL

ZGL (JLON, JLEV) = ZDRYGL

ENDIF

It can be seen that in case of layer without cloud liquid/ice, coefficients are set to
their dry asymptotic values ZDRYEO{A,D}{L,I} and ZDRYG{L,I}, precomputed at the
beginning of JB loop:

ZDRYEOAI = EXP(FCM_P_AI(JB, 0))*ZRRG

ZDRYEOAL = EXP(FCM_P_AL(JB, 0))*ZRRG

ZDRYEODI = EXP(FCM_P_DI(JB, 0))*ZRRG

ZDRYEODL = EXP(FCM_P_DL(JB, 0))*ZRRG

ZDRYGI = &

& 1.0_JPRB/( 1.0_JPRB + EXP(-2.0_JPRB*FCM_P_GI(JB, 0)) )

ZDRYGL = &

& 1.0_JPRB/( 1.0_JPRB + EXP(-2.0_JPRB*FCM_P_GL(JB, 0)) )

Here the property y(0) = p0 of Pade approximants is used. Precomputation of dry
values outside of JLEV, JLON loop can save some exponentials.

Unscaled coefficients kabs, kscat enable to evaluate unsaturated optical depth δ0 of
each cloud layer (array ZDEL0):

ZDEL0(JLON, JLEV) = PDELP(JLON, JLEV)*( &

& PQI(JLON, JLEV)*(ZEOAI(JLON, JLEV) + ZEODI(JLON, JLEV)) + &

& PQL(JLON, JLEV)*(ZEOAL(JLON, JLEV) + ZEODL(JLON, JLEV)) )

As the next step, effective optical depth δeff0 for each cloud layer is computed, taking
into account influence of other cloud layers:

δeff0j =
∑

k

f(nj , nk)δ0k = δ0j +
∑

k 6=j

f(nj , nk)δ0k

Vertical summation goes either from the top to current cloud layer (array ZDEL0_EFF),
or through all atmosphere (array ZDEL0_EFF2).

Cloud saturation is parameterized via saturation factors cabs and cscat, fitted to
effective optical depth δeff0 . Dependency has the form:

c(δeff0j ) =
1

1 +

(

δeff0j

δcrit0

)µ
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Two fitting parameters are critical optical depth δcrit0 for which c = 1

2
(array

FCM_DEL_{A,D}), and exponent µ determining sharpness of saturation profile (array
FCM_MU_{A,D}). Their optimal values were found in idealized environment, performing
wavelength by wavelength computations for sample of 1-layer homogeneous clouds
with different geometrical thicknesses and liquid/ice water contents. Requirement that
saturated optical depth of homogeneous cloud δ = c(δ0)δ0 increases with unsaturated
optical depth δ0 imposes restriction 0 < µ ≤ 1.

For solar absorption, above mentioned dependency is modified in order to better
describe vertical profile of saturation inside cloud. Simplified considerations dealing
with pure absorption and pure scattering in homogeneous rectangular cloud showed that
while saturation factor cscat does not depend on height (which justifies summation of δeff0
through all atmosphere), there is significant vertical variation of saturation factor cabs

(this is due to the fact that in pure absorption case solar flux at given level is influenced
by cloud layers above, but not by cloud layers below – provided that surface albedo is not
too high). It can be shown easily that in the absence of scattering and surface reflection,
vertical variation of saturation factor cabs can be obtained from previous formula as:

c̃(δ0) =
d

dδ0
[c(δ0)δ0] = c(δ0)[µc(δ0) + 1− µ]

In the new formula, δ0 denotes effective optical depth summed from the top to current
cloud layer.

For efficiency reasons, power function occuring in saturation factors ZCA, ZCD is
decomposed to exponential and logarithm:

! saturation factors c_abs, c_scat

ZARG2 = LOG(MAX(ZDEL0_EFF2(JLON, JLEV), ZEPS))

IF ( JB == 1 ) THEN

! solar band

ZARG = LOG(MAX(ZDEL0_EFF(JLON, JLEV), ZEPS))

ZCA = 1.0_JPRB/(1.0_JPRB + EXP(ZMUA*ZARG - ZDELA))

ZCA = ZCA*(ZMUA*ZCA + 1.0_JPRB - ZMUA)

ZCD = 1.0_JPRB/(1.0_JPRB + EXP(ZMUD*ZARG2 - ZDELD))

ELSE

! thermal band

ZCA = 1.0_JPRB/(1.0_JPRB + EXP(ZMUA*ZARG2 - ZDELA))

ZCD = 1.0_JPRB/(1.0_JPRB + EXP(ZMUD*ZARG2 - ZDELD))

ENDIF

Auxiliary quantities ZMU{A,D} and ZDEL{A,D} are precomputed at the beginning of JB
loop:

ZMUA = FCM_MU_A(JB)

ZMUD = FCM_MU_D(JB)

ZDELA = ZMUA*LOG(FCM_DEL_A(JB))

ZDELD = ZMUD*LOG(FCM_DEL_D(JB))

Local saturation factors ZCA and ZCD are applied to absorption and scattering
coefficients in order to get their saturated values:
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! saturated absorption coefficient k_abs

ZEOAI(JLON, JLEV) = ZCA*ZEOAI(JLON, JLEV)

ZEOAL(JLON, JLEV) = ZCA*ZEOAL(JLON, JLEV)

! saturated scattering coefficient k_scat

ZEODI(JLON, JLEV) = ZCD*ZEODI(JLON, JLEV)

ZEODL(JLON, JLEV) = ZCD*ZEODL(JLON, JLEV)

At the end of JB loop, output arrays PEO{A,D}{S,T}{L,I} and PBSF{S,T}{L,I} are
filled. Back scatter fraction is diagnosed from asymmetry factor ZG{L,I} using formula
β̄ = (4 + g)/(8 + 8g):

IF ( JB == 1 ) THEN

! solar band

DO JLEV = KTDIA, KLEV

DO JLON = KIDIA, KFDIA

PEOASI(JLON, JLEV) = ZEOAI(JLON, JLEV)

PEOASL(JLON, JLEV) = ZEOAL(JLON, JLEV)

PEODSI(JLON, JLEV) = ZEODI(JLON, JLEV)

PEODSL(JLON, JLEV) = ZEODL(JLON, JLEV)

PBSFSI(JLON, JLEV) = (4.0_JPRB + ZGI(JLON, JLEV))/ &

& (8.0_JPRB + 8.0_JPRB*ZGI(JLON, JLEV))

PBSFSL(JLON, JLEV) = (4.0_JPRB + ZGL(JLON, JLEV))/ &

& (8.0_JPRB + 8.0_JPRB*ZGL(JLON, JLEV))

! coefficients for computation of upscatter fraction

PUSAI(JLON, JLEV) = 2.0_JPRB*PBSFSI(JLON, JLEV) - 1.0_JPRB

PUSAL(JLON, JLEV) = 2.0_JPRB*PBSFSL(JLON, JLEV) - 1.0_JPRB

PUSBI(JLON, JLEV) = 0.0_JPRB

PUSBL(JLON, JLEV) = 0.0_JPRB

ENDDO

ENDDO

ELSEIF ( JB == 2 ) THEN

! thermal band

DO JLEV = KTDIA, KLEV

DO JLON = KIDIA, KFDIA

PEOATI(JLON, JLEV) = ZEOAI(JLON, JLEV)

PEOATL(JLON, JLEV) = ZEOAL(JLON, JLEV)

PEODTI(JLON, JLEV) = ZEODI(JLON, JLEV)

PEODTL(JLON, JLEV) = ZEODL(JLON, JLEV)

PBSFTI(JLON, JLEV) = (4.0_JPRB + ZGI(JLON, JLEV))/ &

& (8.0_JPRB + 8.0_JPRB*ZGI(JLON, JLEV))

PBSFTL(JLON, JLEV) = (4.0_JPRB + ZGL(JLON, JLEV))/ &

& (8.0_JPRB + 8.0_JPRB*ZGL(JLON, JLEV))

ENDDO

ENDDO

ENDIF
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It can be seen that in solar band aditional arrays PUSA{L,I} and PUSB{L,I} are
computed. These are coefficients a and b which are used in general formula for upscatter
fraction β(µ0) = (1

2
+aµ0)/(1+ bµ0). Their setting comes from special relation between

upscatter fraction β(µ0) and backscatter fraction β̄, which holds in used δ-two stream
system:

β(µ0) =
1

2
+ (2β̄ − 1)µ0

Finally it should be noted that default values of namelist variables FCM_* (FCM
stands for ‘Fits for Cloud Model’) were tuned in idealized cloud simulation model based
on experimentally measured cloud spectral properties. Most of them should not be
changed by hand, since without complex retuning one is likely to introduce inconsisten-
cies. What can be played with are parameters FCM_DEL_{A,D}, FCM_MU_{A,D} appearing
in fits of saturation factors cabs, cscat. Effect of cloud geometry can be fine tuned by
changing scaling exponent for cloud fraction REXP_NEB.

4.2 Voigt effect

Concerned subroutines:

APLPAR

ACRANEB

Driving logical keys:

LVOIGT – activates treatment of Voigt effect
LVFULL – activates exact computation (expensive)

Changes in APLPAR:

Array PR (gas constant of air R) is passed to ACRANEB.

Changes in ACRANEB:

Treatment of Voigt effect modifies computation of equivalent band width ZW{S,T}

{C,H,O} (S,T denotes solar and thermal band; C,H,O denotes CO2, H2O and O3). It is
introduced via correction factor ZAFVOI which is inserted into formula based on Malkmus
band model (value 1 means unmodified Malkmus formula). Correction is inserted on
every place where equivalent band width is computed. Following example illustrates it
for H2O in thermal band (ZWTH):

ZAFVOI=1._JPRB

IF (LVOIGT) THEN

IF (LVFULL) THEN

ZVOIEMP=EXP(ZEPSV*LOG(ZIBV0*(ZBZV/ZVOIGT))*LOG(ZIZV0*ZVOIGT))

ELSE

ZVOIEMP=ZVOISIM

ENDIF

ZAFVOI=1._JPRB+ZVOIGT/(RPI*(ZBZV/ZVOIGT)/(1.5_JPRB*SQRT(ZBZV))&

&+4._JPRB/(ZBZV/ZVOIGT)+5._JPRB+ZGAMV*SQRT(ZBZV/ZVOIGT)&

&*ZVOIEMP)

ENDIF

ZWTH=(ZGAS2B(4)*(ZRTH(JLON)/ZNTH(JLON)))*(SQRT(1._JPRB+ZAFVOI&

&*ZBZV)-1._JPRB)+GCC(4)*ZCTH(JLON)
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Exact computation (LVFULL=.TRUE.) evaluates term ZVOIEMP using exponential and
two logarithms. Since this is done inside JLEV, JLON loop, computation is expensive and
cheaper alternative had to be implemented (branch LVFULL=.FALSE.). It simply sets
ZVOIEMP to constant value ZVOISIM, which is the estimate of its global average (currently
set to 1.21).

Computation of value ZVOIGT requires air density. For this reason subroutine
interface had to be extended by input array PR (gas constant of air R). Air density
can then be diagnosed from state equation.

4.3 Statistical model for bracketting technique in the NER formalism

Concerned subroutines:

APLPAR

ACRANEB

Driving logical keys:

LRMIX – activates use of bracketting technique
LREWS – activates exact computation of exchange with surface
LRPROX – activates exact computation of exchange between adjacent layers
LRAUTOEV – activates exact computation of all exchanges (expensive)
LNEWSTAT – activates new statistical fit of weights α

Changes in APLPAR:

Auxiliary profiles ZMAN, ZMAK for determination of weights α are precomputed, then
they are passed to ACRANEB. Since these profiles do not depend on geographical
location, arrays ZMAN, ZMAK are dimensioned as 0:KLEV, but only elements 1:KLEV-1 are
initialized. For old statistical fit (LNEWSTAT=.FALSE.) following expressions are used:

ZMAN(JLEV) = 0.3σ∗j

ZMAK(JLEV) = 0.1

Index j denotes half level JLEV, σ∗j = p∗j/pref where p∗j is corresponding pressure in
standard atmosphere and pref = 101 325Pa.

New statistical fit (LNEWSTAT=.TRUE.) is more sophisticated and it uses different
settings for approximate and exact treatment of exchange between adjacent layers. In
case of approximate treatment (LRPROX=.FALSE.) it sets:

ZMAN(JLEV) = 0.29 tanh(2.0σ∗j )

ZMAK(JLEV) = 0.07σ∗j
1.5 + 0.14(1− σ∗j )

20

For exact treatment (LRPROX=.TRUE.) tuning of ZMAN is different:

ZMAN(JLEV) = 0.14 tanh(3.5σ∗j )

ZMAK(JLEV) = 0.07σ∗j
1.5 + 0.14(1− σ∗j )

20

Moreover, in this case values ZMAK close to the edges of atmosphere must be pushed
toward zero in order to prevent double accounting of ‘local’ effect:
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IF ( LRPROX ) THEN

DO JLEV = KTDIA, KTDIA+3

ZMAK(JLEV) = ZMAK(JLEV) / 2**(KTDIA+4-JLEV)

ENDDO

DO JLEV = KLEV-4, KLEV-1

ZMAK(JLEV) = ZMAK(JLEV) / 2**(5-KLEV+JLEV)

ENDDO

ENDIF

Changes in ACRANEB:

Subroutine interface was extended by input arrays PMAK, PMAN, precomputed in APLPAR.
Computation of weights αj (array ZMIXP) for half levels 1:KLEV-1 now reads:

αj = min

[

1, PMAN(JLEV)+ PMAK(JLEV) ·max

(

0,
∆(cpθ̃)j
∆φj

)]

θ̃ = T

(

pS
p

)κ

κ =
R

cp

Symbols R and cp denote gas constant of air and specific heat of air at constant
pressure, φ is geopotential. Weights αj depend on geographical location via atmospheric

stability
∂(cpθ̃)

∂φ
, where quantity θ̃ in given profile is proportional to potential temperature

(difference is caused by the use of surface pressure pS in its definition, instead of constant
reference pressure 100 000Pa). At the model top (j = 0) and bottom (j = J) weights
are extrapolated:

α0 = α1

αJ = αJ−1
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