
Regional Cooperation for
Limited Area Modeling in Central Europe

An introduction to code to code
translation
Martina Tudor (© Daan Degrauwe, Denis Haumont et al)

2

Introduction
Source to source (S2S) translation tools are tools (programs!) that take a program
source code and translate it to a program source code, the resulting code should

- essentially compute the same thing, but
- Be optimized/adapted for a particular compiler and hardware platform
- Be (more) efficient :)

S2S tools should allow scientists to write their code without being (too much)
bothered about the platform(s) on which their code should run.

S2S tools can impose strict/additional coding rules to the input source code in order
to be able to process it (properly). One of the reasons for the code refactoring
started in 2022 was to prepare the code for running on GPUs.

S2S tools are also code which can contain bugs and other features.

3

Why to use GPUs © Denis Haumont

GPUs have massive computation power
- AMD GPU MI250x peaks at 42.2 TFLOPS

GPUs benefits from highly parallel problems like NWP
GPUs are power efficient
GPUs are here to stay: machine learning working horses
A minimum amount of GPU code is required for some allocations
However:

- There is currently no GPU standard, different manufacturers require different
coding approach

- Sometimes new model of GPU from the same vendor requires different GPU
directives

- Compilers do not handle the above
That is why we should use code to code translators.

4

Code adaptation for GPUS © Denis Haumont

Guidelines
- Current performance on CPU (used for operations) must not degrade

(also for vector machines)
- GPU porting should be as transparent as possible for NWP scientists

The code adaptation should allow extending the code in the future
- keep a single code base (that
- code remain readable to scientists

Codebase is large: allow progressive porting, by phases

The adapted code should use code to code translators before compilation for
specific GPU.

5

Code adaptation for GPUS (goal) © Denis Haumont

D. Degrauwe & P. Termonia; AMA 2022

Spectral
transform

Gridpoint
dynamics

Turbulence

Radiation

Spectral
transform

Spectral
dynamics

Microphysics

CUDA libraries

Source-to-source
transformation

Source-to-source
transformation

CUDA libraries

ML emulation

GPU

CPU

GPU

GPU

GPU

GPU

CPU

Surface CPU

Ti
m
es

te
p

An example of what would we like to
achieve:

● Hybrid execution with part of the
code running on GPU and other
part on CPU

● Flexibility: the same code can be
run on GPUs or CPUs (with
different preprocessing and code
to code translation tools)

● Source-to-source translation can
be used for porting of the
scientific code

● Optimized vendor libraries can
be used for specific
computations (FFT)

● Part of the model can be
adapted using S2S translators or
emulated via ML

6

Code adaptation for GPUS © Denis Haumont

D. Degrauwe & P. Termonia; AMA 2022

What worked for ALARO in June
2024:

● Hybrid execution with part of the
code running on GPU and other
part on CPU

● Flexibility: the same code can be
run on GPUs or CPUs (with
different preprocessing and code
to code translation tools)

● Source-to-source translation can
be used for porting of the
scientific code

● Optimized vendor libraries can
be used for specific
computations (FFT)

● Radiation is adapted using S2S
translators

Source-to-source
transformation

Spectral
transform

Gridpoint
dynamics

Turbulence

Radiation

Spectral
transform

Spectral
dynamics

Microphysics

CUDA/HIP
libraries

CUDA/HIP
libraries

GPU

CPU

GPU

GPU

CPU

Surface CPU

Ti
m
es

te
p

CPU

CPU

7

Code adaptation for GPUS (update?)

D. Degrauwe & P. Termonia; AMA 2022

ALARO physics can be run on GPUs
(without 3MT for now)

Hybrid execution with part of the
code running on GPU and other part
on CPU

● Flexibility: the same code can be
run on GPUs or CPUs (with
different preprocessing and code
to code translation tools)

● Source-to-source translation can
be used for porting of the
scientific code

● Optimized vendor libraries can
be used for specific
computations (FFT)

● Radiation is adapted using S2S
translators

Source-to-source
transformation

Spectral
transform

Gridpoint
dynamics

Turbulence

Radiation

Spectral
transform

Spectral
dynamics

Microphysics

CUDA/HIP
libraries

CUDA/HIP
libraries

GPU

CPU

GPU

GPU

CPU

Surface CPU

Ti
m
es

te
p

Source-to-source
transformation

GPU

Source-to-source
transformation GPU

8

Code adaptation for GPUs is based on
- Using hardware-optimized libraries where possible: hipBLAS, hipFFT, …
- Increase flexibility by improving code layout (i.e refactoring) and enforce coding

standard rules (https://sites.ecmwf.int/docs/ifs-arpege-coding-standards/fortran/)
- Use of smart data-structure (Field API) to manage memory and data transfer (memory

communication between CPU and GPU, can be time consuming)
- The code that is regularly added or changed by scientists goes through the

source-to-source translation tool in a (semi)-automated way

We can use Loki or fxtran scripts to implement an OpenACC directives to the Fortran
code

https://sites.ecmwf.int/docs/ifs-arpege-coding-standards/fortran/
https://sites.ecmwf.int/docs/ifs-arpege-coding-standards/fortran/
https://sites.ecmwf.int/docs/ifs-arpege-coding-standards/fortran/

9

fxtran
Source to source (S2S) translation tools written by Phillipe Marginaud in Perl

- can be seen almost as an advanced text manipulation tool, where strings are replaced by other strings based on
certain patterns.

- Therefore fxtran is much faster than loki
- Used in MF on ARPEGE code
- Used by Daan on ALARO (it works for rad, turb, microphysics)

- We have recipes that transforms successfully all the physics parameterization of Alaro.
- We also have recipes that work for some part of the dynamical core, mainly the semi-lagrangian.
- We are waiting for new recipes for the spectral semi-implicit.
- We also have very efficient GPU code for spectral conversion (FFT) using vendor library

-

The principle of source to source translation is to apply a set of recipes to the code, which explain how to transform the
code.
Philippe used Fxtran (ie in Perl) to work out a set of recipes for Arpege (that is also working for Alaro, because the code
follow the same structure).
The exact same recipes are now being implemented in Loki (ie in Python).
So Fxtran or Loki can be seen as an "implementation detail", the language chosen for implementing the recipes (which
are the important part).
And yes, in the future it will be 100% Loki, but since all the recipes are not yet available, we still relied on the
prototype in Fxtran.
show?

10

loki
ECMWF in-house open source Python package source to source translation tool.

- loki "understands" the code: it is able to link information (type definitions, variable types, subroutine
signatures) between files.

- loki offers more advanced things like inlining functions and subroutines (even if they reside in another
module); passing module variables as arguments through several nested subroutine calls, etc.

https://github.com/ecmwf-ifs/loki/
- Automated - it is a tool, it requires instructions from the user, a set of instructions is referred to as the

recipe, and then it is executed to transform the input F90 source code to produce GPU compilable
(optimized?) F90 code

- domain-specific language (DSL) concept for separating legible science from highly optimised code layers
targeting different processor types, and automated source-to-source code transformation tools

“NWP codes have been developed over decades and comprise a large monolithic code base. Over the course of
their lifetime, compute architectures have evolved from vector computers to distributed memory multi-processors
and hybrid accelerated supercomputers. NWP codes are run on a larger variety of systems and have to target
diverse hardware architectures today. Meanwhile, the objective of performance portability using a single
programming model remains elusive and accommodating multiple bespoke and sometimes conflicting
optimisations for specific hardware architectures becomes increasingly unsustainable.
a freely-programmable API and inter-procedural analysis features to encode custom transformations that
are applied programmatically across large source trees

11

loki
the "single column" idea is
somewhat outdated since it
doesn't fit with our
nproma-sliced memory
layout. Therefore the loki
recipes are named SCC*
with SCC standing for
single column coalesced
(indicating that adjacent
memory positions
correspond to adjacent
gridpoints)

12

Loki-SCC - GPU-specific transformation pipelines
Note that this is
just one recipe
already
implemented in
loki: various
alternatives exist,
with the horizontal
loop either in the
driver or in the
kernel, with
different options to
fuse loops or split
loops, etc.
While the different
recipes don't make
a huge difference
on performance,
on future platforms
they might. This
richness of recipes
in Loki is another
benefit wrt fxtran

13

Useful links
https://opensource.umr-cnrm.fr/projects/accord/wiki/CRA_Documentation

https://sites.ecmwf.int/docs/ifs-arpege-coding-standards/fortran/
DEODE stuff (?)

https://github.com/ecmwf-ifs/loki/
Session - PASC 2024
Presentation - PASC 2024
Modernisation of the Integrated Forecasting System | ECMWF
From the Scalability Programme to Destination Earth | ECMWF

https://opensource.umr-cnrm.fr/projects/accord/wiki/CRA_Documentation
https://sites.ecmwf.int/docs/ifs-arpege-coding-standards/fortran/
https://github.com/ecmwf-ifs/loki/
https://pasc24.pasc-conference.org/session/?sess=sess127
https://pasc24.pasc-conference.org/presentation/?id=msa155&sess=sess123
https://www.ecmwf.int/en/newsletter/182/computing/modernisation-integrated-forecasting-system
https://www.ecmwf.int/en/newsletter/171/earth-system-science/scalability-programme-destination-earth

14

Thank you for your attention!

