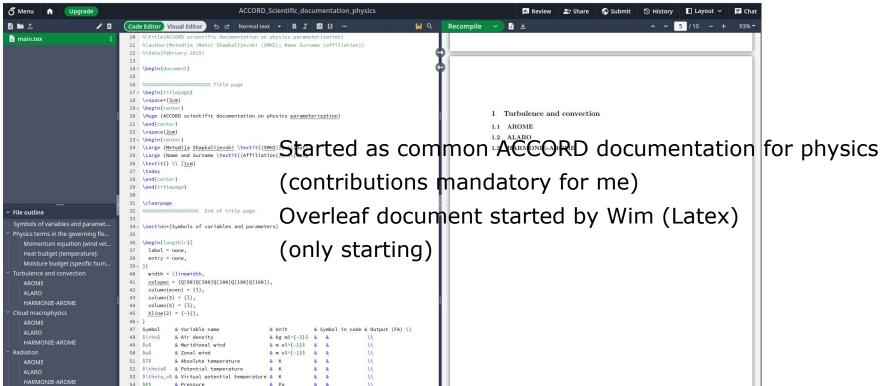
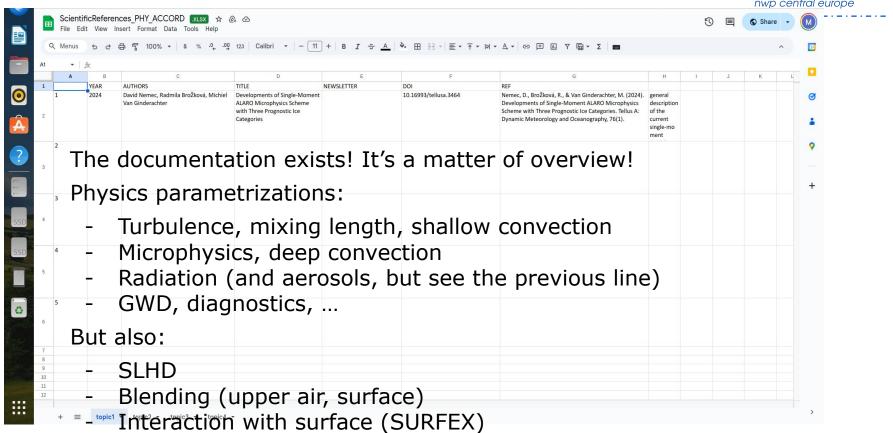
Regional Cooperation for Limited Area Modeling in Central Europe

Some future ALARO activities

Martina Tudor



Physics documentation



ALARO documentation

ALARO specific (review) article

The previous effort could/should also lead to a published paper that could be used as a reference in the future.

- Its an overview, a summary but not repetition of already published material
- What about the developments not published as scientific papers?
- Describe the latest developments (some not published yet) or focus on what's published?

Choosing the publisher (some condition open source code)

Model Uncertainty Model Intercomparison Project

MU-MIP is an international project which seeks to characterise systematic and random component of model error across many different climate models. This is the first coordinated intercomparison of random model error, and will be used to inform stochastic parametrisation development. Some key questions:

How should we best represent model uncertainty/random error using stochastic approaches?

To what extent should this representation be model specific or a fundamental property of atmospheric models?

Are current approaches justified? How can they be improved?

Can a coarse-graining approach be used to validate and compare high-resolution simulations and their behaviour across scales.

URANIE and MUSC and ALARO (idea Michiel)

https://opensource.umr-cnrm.fr/attachments/download/5543/20240123

EPS michielvg.pdf

The URANIE platform

Main purpose:

- Uncertainty propagation
- Surrogate model generation
- Sensitivity analysis
- Optimisation
- Reliability analysis
 Works for HARMONIE scrips in EC
 combine it with MUSC

Michiel and James
Combining URANIE and HarmonEPS

- EPS workflow is too complex to use as black-box
- Staging of Observations/LBCs
- o Cycling DA
- Perturbations

Surface/SURFEX in ALARO

© Patrick Samuelson The conclusion from ta surface ACCORD WW in Brussels from 2024 is that we should aim for three patches with the following configurations:

- Patch 1, bare soil, rocks and permanent snow
 - Configuration: Soil Organic Carbon (SOC) + Dry Soil Layer (DSL)
- Patch 2, forest
 - Configuration: MEB + SOC + Litter + newMLCH (Increased SOC percentage for the top two layers)
- Patch 3, low vegetation (grass and crops)
 - Configuration: MEB + SOC + DSL + newMLCH (Increased SOC percentage for the top two layers)

Please note that

- current cy49t2 code does not allow activation of MEB for non-forested patches. A PR to allow this exists for cy49t2h. Patrick tested this during the DEODE WW in Prague.
- the SOC option requires additional input files. Global versions of these are now available via the SURFEX page here.
- the DSL option requires new code. A PR for this exists for cy46h. It will be a PR for the cy49t2h repository (done?)
- the newMLCH option is under validation in experiments by the WW participants. Will be a PR when validated (done?)
- https://docs.google.com/presentation/d/1BdzWBbpSnvE9EYbDu2qvZTd_2ofj3I6vdMoNw9i51aM/edit#slide=id.g3283d3885e1_0
 __160 (Patrick's presentation explaining SURFEX options in CY46h1, CY48t3, CY49t2 and recommendations)

Thank you for your attention!

