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  Motivation and objectives

▶ The ultimate goal is to have a ∆x ∼< 1km model providing an added value to the
existing operational configurations

▶ Therefore, we first addressed the settings of model dynamics (mostly horizontal
diffusion) and concluded that its tuning is needed at these scales - not easy to achieve

▶ The 3D turbulence was considered a necessary addition to provide the added value but
its role seems to change

▶ By the above increase in resolution, we move across the deep convection grey zone
and enter the grey zone of shallow convection and turbulence (some adjustments are
expected)
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  Introduction: addressing 3D effects

▶ There is an ongoing related activity in the ACCORD consortium (in the AROME CMC)

▶ Thereby, the following 3D effects are considered:

▶ In production of turbulence energies after Goger et al. (2018, 2019)

▶ The contribution of largest sub-filter scale eddies after Moeng et al. (2010);
so-called Leonard terms (originates from LES)
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▶ Additionally, we can utilize the 1D+2D scheme in TOUCANS, solving 2D diffusion
equation for the horizontal direction
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  The existing 3D approaches within the TOUCANS scheme

▶ TOUCANS is a two prognostic energy scheme (Baštak Ďuran et al. 2014, 2018):
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I, II - source terms; sL - static energy; qt - total specific moisture
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  The existing 3D approaches within the TOUCANS scheme

▶ In Goger et al. (2018, 2019), the TKE/TTE shear production term (I) is extended into 3D:
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▶ The I
horiz

term is parameterized following Smagorinsky (1963):
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▶ The difference between Goger et al. (2018) and Goger et al. (2019) is in L
H

K
treatment:
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cs - Smagorinsky’s constant; U - velocity scale; σu,v - horizontal wind variances; zi - PBL height
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  The existing 3D approaches within the TOUCANS scheme

▶ The 1D+2D scheme Eqs. are derived assuming ∂KM/H,hor/∂x + ∂KM/H,hor/∂y = 0:
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▶ The exchange coefficients for horizontal and vertical directions have the same ”shape”:
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  The existing 3D approaches within the TOUCANS scheme

▶ The shear and stretching HTLS are computed after Wang et al. (2021):
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▶ The combined HTLS is obtained by averaging L
Hstr

and L
Hstr

and protected as follows:
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s - resolution-dependent scaling factor; W =
√
u2 + v2 - wind speed

▶ 8



  The existing 3D approaches within the TOUCANS scheme

▶ Following the preliminary tests (small impact of 3D turbulence), we ”adjusted” the 1D +
2D scheme’s code:
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  Results: The preliminary analysis across resolutions

▶ Central European domain: 1024 x
1024 km, linear grid, 87 vert. lev.,
∆x=4, 2, 1 and 0.5 km

▶ NHYD dyn., ICI scheme (1 iter.),
horiz. diffusion and ALARO-1 phy.
(both as in operational ALADIN-CZ)

▶ INIT: ALADIN-CZ, LBC: ARPEGE
(3-h freq.)

▶ The results from two convection cases: (i) with considerable large-scale forcing and (ii) more locally driven

▶ During the analysis, we rely on: KE spectra, averaged profiles of resolved and subgrid TKE (TKEres and
TKEsbg ), convective fluxes and noise-indicative fields (e.g., pressure departure)

▶ The TKEres is computed by applying the Reynolds averaging to predicted wind components (ui = ui + u′
i
):
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  Results: Adjusting the 3D turbulence settings (case 1)

▶ The sensitivity tests to the C′
K parameter (the strength of the 1D+2D scheme):
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  Results: Adjusting the 3D turbulence settings (case 1)

▶ The impact off the 3D turbulence at ∆x = 0.5 km:
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  Results: Adjusting the 3D turbulence settings (case 1)

▶ The sensitivity of complementary diagnostics to L
H

K
protection and zoro0m :
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  Results: The role of the deep convection scheme (3MT) - case 1

▶ How 3MT scheme adapts with a decrease in ∆x?

condensation fluxes
in updraught

1. 3MT scheme adapts only
slightly with ∆x

2. Total condensation flux
increases with the
grid-scale part
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  Results: The role of the deep convection scheme (3MT) - case 1

▶ Can we help the 3MT scheme to adapt a bit more?

condensation fluxes
in updraught

1. The largest sensitivity
is to RMULACVG↓

2. The downdraught part
has very small impact
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  Results: The role of the deep convection scheme (3MT) - case 1

▶ The impact off 3MT scheme at ∆x = 1.0 km and ∆x = 0.5 km:

condensation fluxes
in updraught

1. The maximum is shifted
to one hour earlier

2. The total magnitude
is comparable

Can we simply switch off the 3MT scheme?
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  Results: The role of the deep convection scheme (3MT) - case 1

▶ The impact off 3MT scheme at ∆x = 1.0 km and ∆x = 0.5 km:
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  Results: The role of the deep convection scheme (3MT) - case 2

▶ The impact off 3MT scheme at ∆x = 1.0 km and ∆x = 0.5 km:

condensation fluxes
in updraught

1. The contribution from
sub-grid- and grid-scale
different than in case 1

2. The total flux is ∼ 20%
smaller without the 3MT
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  Results: The role of the deep convection scheme (3MT) - case 2

▶ The impact off 3MT scheme at ∆x = 0.5 km:
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  Conclusions

▶ The default model settings at ∆x = 1.0 km and ∆x = 0.5 produce progressively
increasing noisy patterns

▶ Stronger horizontal diffusion is needed but the existing components (SLHD + 2 spectral)
seem hard to tune

▶ The 3D turbulence helps to reduce the noise and make precipitation forecast closer to
observations; further inspection is needed on the values of closure parameters and L

H

K

▶ The 3MT scheme should not be switched off for ∆x ∼< 1.0 km but its adjustment/tuning
is required

▶ More extensive validation is needed
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▶ Bašták Ďurán, I., J.-F. Geleyn, and F. Váňa (2014): A Compact Model for the Stability Dependency of TKE Production–Destruction–Conversion
Terms Valid for the Whole Range of Richardson Numbers. J. Atmos. Sci., 71, 3004–3026.
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