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v = *KM?, v = *KM?
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stw = —Kp ot 4+ TOMs, i = — Ky 22 L oM
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Ky = CxLgxsver, Kp = CrxLugs ek, Ly =C3Lk
» Computation of turbulent fluxes in the surface layer:

(W), = Cov/ (U + v2)[6( ?s] Cymyu = Cyyuan Fayu (Ri)
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» TLS is an essential quantity in the TKE — L type of closure representing the size
(dimension) of the most energetic turbulence eddies

» TOUCANS distinguishes several TLS: Lk, and L. (related via the master TLS - L,,)

» Following Redelsperger et al. (2001), the relationship between L, L. and L,, is
stability-dependent (cf. Masek et. al. (2022) for details):

L L. 1-Rig]?
Lk = LyFé, Le=—, F. = - 10
a F. [XB (le):| (10)
» For consistency with previous pTKE scheme, it is assumed:
V3 1 C. 1
ly = o (LE - L)* — L,= —5lm, v=(CkgCe)* (11)

lm - Prandtl type mixing length; C./v® ~ 6 (prone to tuning)
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» Currently, the Geleyn-Cedilnik formulation is a default choice in TOUCANS:

C. KZ

3 _ Z
14 1 + Kz 1+exp( am 4/ HppL, +bm)
Am ﬁm""eXp(_am \/ﬁ +bm)

GC _
Ly~ =

(a)

Hyg = 62.5 [m]

1. Very sensitive to the H,,; estimation

. = 1000 [m]
H,,, = 4000 [m]

2. UAL=const. (should be regime-dependent)

z [km]
z [km]

3. Small variability (in practice)

4. Too strong mixing in SABL

REF: a,,=4.5, b,,=3.0, 8, =0.1
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» We start from the generalized version of BL89 TLS following Rodier et al. (2017):

z+Lup g
/ {m [ev(zl) - GV(Z)] + Co \/@S(Z/)} dz/ B e(z) (13)

/ iL {Gvggz’) [0v(2) = 0u(2)] + o WS(Z’)} dz' = e(z) (14)
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» Can we assign L, directly to any of TLS options within TOUCANS?

1. Obey similarity laws in the surface layer: ¢ and }x

2. Ensure numerically stable solution: Ji{

» Initial attempt with the remaining option (L,):
C Problems:
L, = min [ —kz, L (16) : ;
n 3 e HAVG 1. Obeying MOST is not ensured
2. Possibility of a "jumpy” solution

3. Insufficient mixing (overall)
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» Smoothing the transition between two solutions in the surface layer:

’ ’ C2 - " z
fW:3-f2_2.f3; f’ = max [0, min | 1, PBL ¢, >ec, (17)
" " " Yt
CE
L, = stw/iz—k(l—fw)LAVG (18)
0.30
— ¢,=0.0, ¢=0.1
0.25 — =00, =02
— 7oL am02 1. Ensures obeying MOST and smooth and stable solution

0.20 — ¢,=0.05,¢,=0.15

2. Partly solves the problem of insufficient mixing

3. Problems in convective conditions and near PBL top

> 9 @2&9eo$pheve % < X¢ AsoveTe0

= Austria i =B




Development of the new TLS formulation LACE

nwp central europe

» Few more items are needed to finalize the TLS formulation:

1) Regime-dependent minimum TLS near the PBL top (Bechtold and Marquet 2020):

Ly = min {max {LBm o b “loin (pg ). LBm} ,LBm} (19)
Caz2 —Cax
Abs =05(z=15-H,, ) —6s(z=0) (20)
2) Minimum allowed upper-air TLS (L s + Ligans):
Lixs = max(Lyve, Tann)s - L = (Lgis Bagans s Lus) (21)

3) Introduction of global scaling with x (even smoother transition in the surface layer):
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We need a reliable "tool” to validate this — LES-based TLS diagnostics
MicroHH DNS and LES model (van Heerwaarden et al. 2017)
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» The evaluation in idealized cases (1-h averaged profiles): (i) more stable PBL (DYCOMS-Il and GABLST; at
+3-h and +4.5-h) and (ii) convective PBL (ARM and BOMEX; at +10-h and +7-h)

» TLS is diagnosed from LES budgets of e, s, and q; after Bastak Duran et al. (2020) and Reilly et al. (2022)

» An improvement over the LSC in DYCOMS-Il and GABLS cases, particularly near the surface and the PBL top
(key roles of « scaling and L, ..)
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» In ARM and BOMEX cases, LH?* and L$C perform similarly, while LH?#* underestimates TLS and fluxes

» Within the cloud layer and ARM case, LS and LH24) considerably underestimate mixing. However, unlike
LH24* their H,,, is comparable to LES

» The ARM case results point to the importance of counter-gradient terms (TOMs)
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» What is the contribution of components we added to the L}?4 solution?
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» ALADIN-CZ at Ax=2.3125 km and 87 levels, NH-dynamics and ALARO-1 physics

» Anticyclonic period with persistent inversion over Czechia (23 November 2019 case)
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» Slightly improved representation of inversion (Prague-Libus)

» Improved averaged daytime and nighttime temperature and wind profiles at Cabauw
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» The LH?* formulation (close to the initial implementation) has 15-25% larger RMSE for
most of the surface and upper-air scores (up to 850-700 hPa) for two 10-day periods

» Due to x scaling (mainly) and "internal” tuning (Co, c2, ca1, ca2 and Lg 1), the statistical
scores for LH2* are nearly neutral to LS<; confirmed on additional 3-5 day periods

» However, there are also some improvements:

1. BIAS and RMSE of
cloudiness ( ~ 2%)

2. STD of T2m ( ~ 1.5-2%)

3. Extreme 10-m wind (FB
and EDI ~ 3.5-6.5%)

4. Upper-air rel. humidity
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» The settings of L?* TLS formulation are more or less confirmed by LES-diagnostics
and 1D model evaluation, yielding also satisfying first results within the 3D model

» As expected, the improvement is mainly seen in statically stable conditions
» Further validation and tuning of other model components/processes is needed
» Despite similar attempts (Lyin @and Hpg method), the LS formulation is not improved

» Future work aims to address: (i) the scale-awareness of TLS and TOUCANS scheme,

(i) the 3D aspects of turbulence and (iii) the treatment of the stable PBL in situatiotns
with weak wind

The related manuscript is in revision at Monthly Weather Review:
Hrastinski, M., Masek, J.,Bastak Duran, |., Grisogono, B. and Brozkova, R., 2024: Regime-dependent turbulence
length scale formulation for NWP models based on turbulence kinetic energy, shear and stratification.
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Thank you for your attention!
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