Prognostic Turbulence Kinetic Energy (TKE) scheme in IFS (CY49)

Ivan Bašták Ďurán Ivan.Bastak-Duran@ecmwf.int

Supported by: Richard Forbes, Peter Bechtold, Filip Váňa, Philippe Lopez, Marta Janisková, Tobias Becker, ...

Prognostic TKE scheme in IFS:

Current computation:

– Eddy Mass-Flux (EDMF):

$$\rho \overline{\mathbf{w}' \psi'} = -\rho \mathbf{K}_{\psi} \frac{\partial \psi}{\partial \mathbf{z}} + \mathbf{M}_{u} \left(\psi_{u} - \overline{\psi} \right)$$

– Louis / M-O scheme:

$$\mathbf{K}_{\psi} = c_{\psi} \cdot I \cdot f_{\psi} \left(Ri, \zeta \right) \cdot \sqrt{\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2}$$

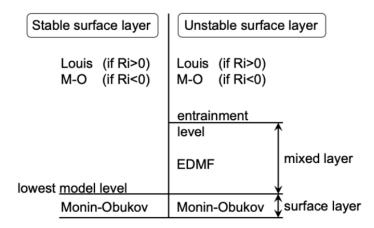


Figure 3.1 Schematic diagram of the different boundary layer regimes.

Turbulence Kinetic Energy (TKE= e_k) computation:

$$\mathbf{K}_{\psi} = C_{\psi} \cdot L \cdot F_{\psi} \left(Ri \right) \cdot \sqrt{\mathbf{e_k}}$$
 $\frac{\partial \mathbf{e_k}}{\partial t} = \mathrm{ADV} + \frac{\partial \left(K_{\mathbf{e_k}} \frac{\partial \mathbf{e_k}}{\partial z} \right)}{\partial z} + \mathbf{K_M} S^2 - \mathbf{K_H} N^2 - \frac{C_{\epsilon} \mathbf{e_k}^{\frac{3}{2}}}{L}$

 $K_{M/H}$ – turbulence exchange coefficients for momentum and heat/moisture, L – turbulence length scale, F_{ψ} – stability dependency function, C_{ψ} , C_{ϵ} – closure constants, N^2 – Brunt–Väisälä frequency, S – wind shear, ADV – advection term, Ri – gradient Richardson number

- Advantages of a prognostic TKE scheme:
 - Regime-adaptive representation of the turbulent flow (expected benefit at higher resolutions)
 - Advection of turbulence intensity (TKE)
 - Improved representation of stable boundary layer
 - Possibility of better interaction with other parameterization via TKE (length scale adjustment + additional source/sink terms)
 - More degrees of freedom in the turbulence scheme

Thank you for your attention!

- The original (Meteo-France) TKE scheme has been updated and recalibrated (CY49):
 - The turbulence length scale reformulation
 - The stability dependency functions updated
 - Cloud-dependent stability parameter introduced
 - Partial equilibrium computation of the TKE source terms
 - Explicit inclusion of the advection term in the TKE solver
 - Utilization of the Estimated Inversion Strength (EIS) index, friction velocity, and heat and moisture surface fluxes to identify the stratocumulus (StCu) regime
 - Interaction with deep convection via length scale modification

Prognostic TKE scheme in IFS:

Turbulent diffusion coefficients in TKE scheme

$$\mathbf{K}_{\mathbf{M}} = C_K \chi_3(Ri_f^*) \sqrt{e_k} L, \quad \mathbf{K}_{\mathbf{H}} = C_3 C_K \phi_3(Ri_f^*) \sqrt{e_k} L$$

- ► TKE measure of turb. intensity
- length scale scale of the problem
- stability functions influence of stratification
- closure constants

 C_K - closure constant, C_3 - inverse Prandtl number at neutrality, Ri_f^* - stability parameter in the form of flux Richardson number: $Ri_f \equiv (\frac{g}{\theta_V} \overline{\theta_V' w'})/(\overline{u'w'} \frac{\partial u}{\partial z} + \overline{v'w'} \frac{\partial v}{\partial z})$

Prognostic TKE scheme in IFS:

Prognostic TKE equation

$$\frac{d\mathbf{e_k}}{dt} = \frac{\partial}{\partial z} \left(K_{\mathbf{e_k}} \frac{\partial \mathbf{e_k}}{\partial z} \right) + ST + BT - \epsilon_k,$$

$$\mathbf{e_k} \equiv \frac{\overline{u'u'} + \overline{v'v'} + \overline{w'w'}}{2} \quad \text{-Turbulence Kinetic Energy (TKE)},$$

$$ST \equiv -\overline{u'w'} \frac{\partial u}{\partial z} - \overline{v'w'} \frac{\partial v}{\partial z} \approx \mathbf{K_MS^2} \quad \text{-Shear term},$$

$$BT \equiv \frac{g}{\theta_v} \overline{\theta_v'w'} = E_{q_t} \overline{q_t'w'} + E_{\theta_l} \overline{\theta_l'w'} \approx -\mathbf{K_HN^2} \quad \text{-Buoyancy term}$$

$$\epsilon_k \equiv \frac{2 \mathbf{e_k}}{\tau_k} = \mathbf{C}_{\epsilon} \frac{\mathbf{e_k^{\frac{3}{2}}}}{\mathbf{L}} \quad \text{-Dissipation term}$$

ST - shear term, BT - buoyancy term, K_{e_k} - turb. exchange coefficients for e_k ; τ_k and τ_k - dissipation time scale; E_{q_t} and E_{θ_l} - cloud-dependent weights, C_{ϵ} - closure constant, S - wind shear, N - 'moist' Brunt-Väisälä Frequency (BVF).

The stability dependence functions:

$$\chi_3(Ri) = \frac{1 - \frac{Ri_f}{R}}{1 - Ri_f}, \quad \phi_3(Ri) = \frac{1 - \frac{Ri_f}{P}}{1 - Ri_f},$$
 $1 \ge R > 0, \quad R \ge P > 0,$

more flexible

P and R - determine the shape of the stability functions according to Bastak Duran et al. (2014)

The stability dependence functions:

Cloud cover dependence:

according to Marquet and Geleyn (2013):

$$Ri_{f} = \frac{K_{H}(Ri_{f})}{K_{M}(Ri_{f})}Ri = \frac{C_{3}R(P - Ri_{f})}{R(P - Ri_{f})}Ri,$$

$$Ri = \frac{N_{1}^{2}(\mathbf{C})}{S^{2}}$$

$$N_{1}^{2}(\mathbf{C}) = gM(\mathbf{C})\frac{c_{pd}}{c_{p}}\frac{\partial \ln(\theta_{s})}{\partial z} + g\frac{\partial \ln(\theta_{s})}{\partial z}$$

$$+gM(\mathbf{C})\left[F(\mathbf{C})(1 + r_{v})\frac{R_{v}}{R} - \Lambda\right]\frac{\partial(q_{t})}{\partial z}$$

M(C) and F(C) - functions of C, $\Lambda=5.87$ - closure constant, $R=R_d \ q_d + R_V \ q_V$, $c_p=c_{pd} \ q_d + c_{pV} \ q_V + c_l \ q_l$, $r_V=q_V/q_d$, q_d - specific content for dry air

The turbulence length scale:

Length scale formulations in CBR

Bougeault and Lacarrere (1989) (L_{BL}):

$$L_{BL} = \left(0.5 L_{up}^{-\frac{2}{3}} + 0.5 L_{down}^{-\frac{2}{3}}\right)^{-\frac{3}{2}},$$

$$\int_{z}^{z+L_{up}} \frac{g}{\theta_{vr}} (\theta_{v}(z) - \theta_{v}(z')) dz' = \mathbf{e_{k}}(z),$$

$$\int_{z-L_{down}}^{z} \frac{g}{\theta_{vr}} (\theta_{v}(z') - \theta_{v}(z)) dz' = \mathbf{e_{k}}(z),$$

$$L_{CBR}$$

$$L_{CBR} = \max\left(\min\left(\kappa z, L_{asim}\right), L_{BL}\right)$$

 $\kappa = 0.4$ is the von Kármán constant, $L_{asim} = 10.0m$ - asimptotic length scale

The turbulence length scale:

Wind shear contribution to L according to de Rodier et al. (2017)

prevents over-estimation of L in stable stratification with strong shear

$$L = \frac{\left(C_{K} C_{\epsilon}\right)^{\frac{1}{4}}}{C_{K}} \left(\frac{L_{up}^{-\frac{2}{3}} + L_{down}^{-\frac{2}{3}}}{2}\right)^{-\frac{3}{2}},$$

$$\int_{z}^{z+L_{up}} \frac{g}{\theta_{vr}} \left(\theta_{v}(z) - \theta_{v}(z') + \mathbf{C_{0}} \cdot \sqrt{\mathbf{e_{k}}} \cdot \mathbf{S(z')}\right) dz' = \mathbf{e_{k}}(z),$$

$$\int_{z-L_{down}}^{z} \frac{g}{\theta_{vr}} \left(\theta_{v}(z) - \theta_{v}(z') + \mathbf{C_{0}} \cdot \sqrt{\mathbf{e_{k}}} \cdot \mathbf{S(z')}\right) dz' = \mathbf{e_{k}}(z),$$

The turbulence length sale update (2):

New calibration of the length scale formulations

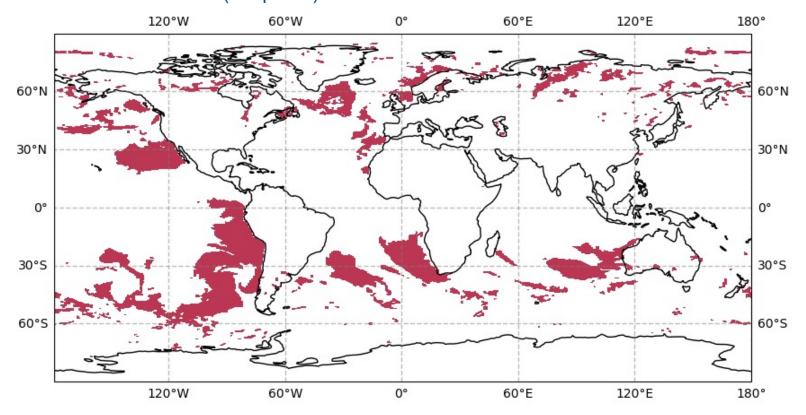
$$L_{1} = \begin{pmatrix} C_{up} L_{up}^{-\frac{2}{3}} + (1 - C_{up}) L_{down}^{-\frac{2}{3}} \end{pmatrix}^{-\frac{3}{2}},$$

$$L_{2} = \begin{pmatrix} C_{up,Stc} L_{up}^{-\frac{2}{3}} + (1 - C_{up,Stc}) L_{down}^{-\frac{2}{3}} \end{pmatrix}^{-\frac{3}{2}},$$

$$L_{1,2} = \max(L_{1}, L_{2})$$

$$L_{asim,p} = L_{asim} - \max(0.0, (z_{Lm} - z) \frac{L_{asim} - L_{asim,s}}{z_{Lm}})$$

$$L_{IFS} = C_{LSC} \max(\min(\kappa z, L_{asim}), L_{1,2}, L_{asim,p}),$$


$$L_{IFS} = L_{asim} - \max(0.0, (z_{Lm} - z) \frac{L_{asim} - L_{asim,p}}{z_{Lm}})$$

 $L_{asim,s}$, $C_{up,Stc}$ - functions of EIS $C_{LSC} = 1.7$, $z_{Lm} = 1e4m$, $C_{up} = 0.8$, $L_{asim} = 50.0m$ - calibration constants.

The turbulence length scale:

• Identification of stratocumulus regime via EIS>4, Bowen ratio<0.25, and negative sensible heat flux (snapshot):

The turbulence length scale:

The EIS dependence:

$$\begin{aligned} \textit{EIS} &< \textit{EIS}^{\textit{StCuL}} &: \quad \textit{L}_{\textit{asim},s} = 30.0, \; \textit{C}_{\textit{up},\textit{Stc}} \equiv \textit{C}_{\textit{up}} = 0.8 \\ \textit{EIS}^{\textit{StCuL}} &< \textit{EIS} < \textit{EIS}^{\textit{StCuH}} \; : \; \; \textit{L}_{\textit{asim},s} = -10.0, \; \textit{C}_{\textit{up},\textit{Stc}} = 0.2 \\ \textit{EIS} &> \textit{EIS}^{\textit{StCuH}} \; : \; \; \textit{L}_{\textit{asim},s} = 10.0, \; \textit{C}_{\textit{up},\textit{Stc}} \equiv \textit{C}_{\textit{up}} = 0.8 \end{aligned}$$

linear interpolation of values between regimes on ΔEIS interval

 $EIS^{StCuL} = 2.0$, $EIS^{StCuH} = 14.0$, $\Delta EIS = 1.0$ - calibration constants.

Partial equilibrium computation of the TKE source terms:

Stable stratification with strong wind shear

- Under-estimation of turbulent mixing due to low value of TKE.
- ▶ Problem with **temporal discretization**: e_k^{t-} =**0** \wedge **ST**^{t0} + **BT**^{t0} \leq **0** \Rightarrow e_k^{t0} =**0**
- ► TKE source terms are computed using TKE from previous time step:

$$ST^{t0} = K_M^{t0} (S^2)^{t-} = C_K L^{t0} \chi_3^{t0} \sqrt{e_k^{t-}} (S^2)^{t-},$$

$$BT^{t0} = -K_H^{t0} (N^2)^{t-} = C_3 C_K L^{t0} \phi_3^{t0} \sqrt{e_k^{t-}} (N^2)^{t-},$$

 $^{^{}t0}$ marks the current time step and index $^{t-}$ marks the previous time step

Partial equilibrium computation of the TKE source terms:

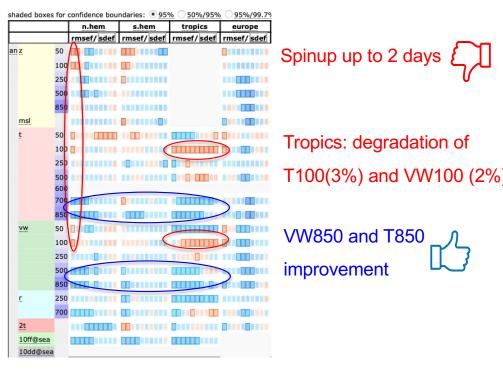
Stable stratification with strong wind shear

► Solution: the TKE source terms are partly computed from TKE equilibrium conditions:

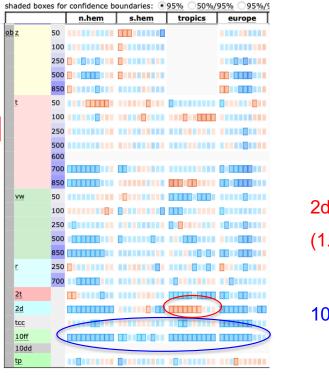
$$ST = (R_{eq} K_M^{eq} + (1 - R_{eq}) K_M) S^2,$$

 $BT = (R_{eq} K_H^{eq} + (1 - R_{eq}) K_H) N^2,$

- $ightharpoonup K_M^{eq}$ and K_H^{eq} can be taken from current first order scheme, or they can be computed consistently from equilibrium TKE, $\tilde{e_k}$:
 - can be taken from current first order scheme
 - or they can be computed consistently from equilibrium TKE:


$$\tilde{\mathbf{e}_{\mathbf{k}}} = \frac{C_K}{C_c} L^2 \left(\chi_3 - C_3 \phi_3 Ri \right) S^2$$

 $R_{eq} = 0.5$ is a calibration constant



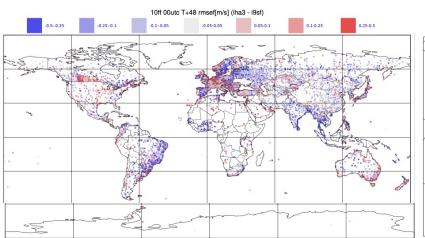
Combined summer and winter one-month period TCO399: RMSE TKE scheme versus operational

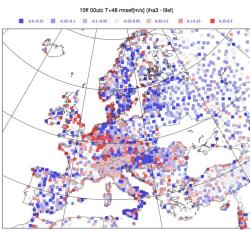
evaluated against their own analysis:

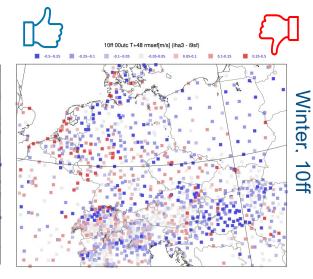
evaluated against observation:

2d degradation (1.5%) in Tropics

10ff improvement

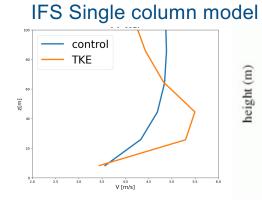




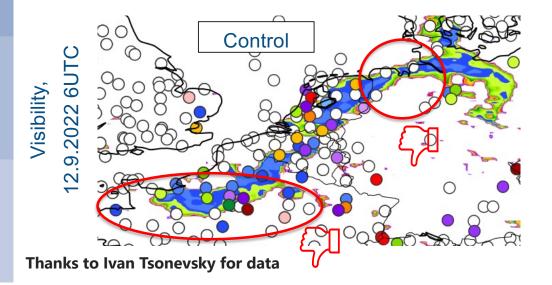

TKE scheme: PBL wind evaluation

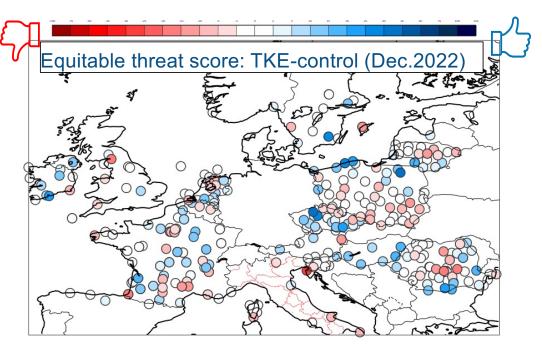
Surface RMSE vs obs. – TCO1279

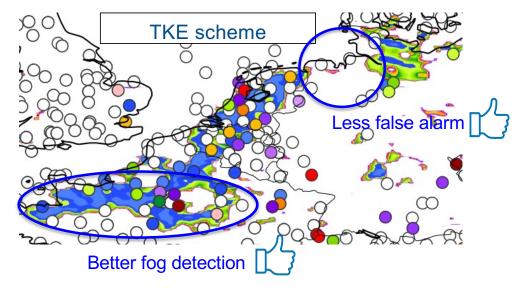
- improvement of 10ff (~1.5%), neutral scores for t2m, t2d, and tcc



Low level jet in stably stratified
 GABLS 4 case

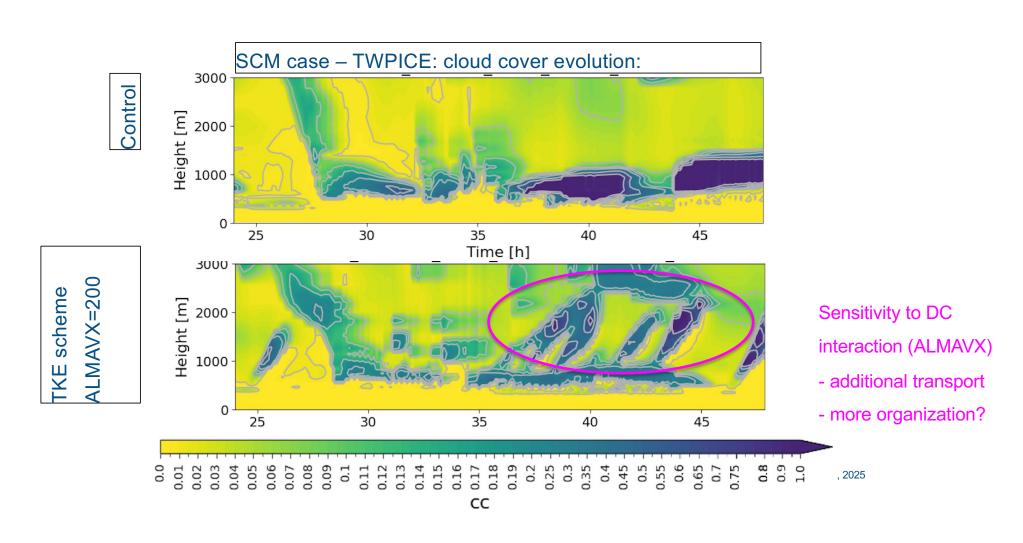




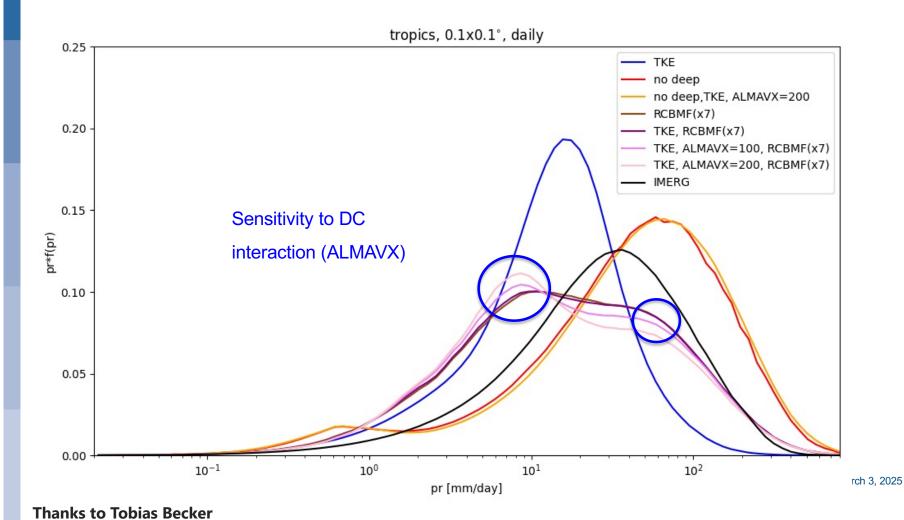

TKE scheme: fog evaluation on TCO1279 with hourly station data (Dec. 2022)

Overall improvement in fog (visibility <1km) detection:

	Control	TKE
POD	15.927	17.773
FAR	71.650	70.854
ETS	13.104	14.575

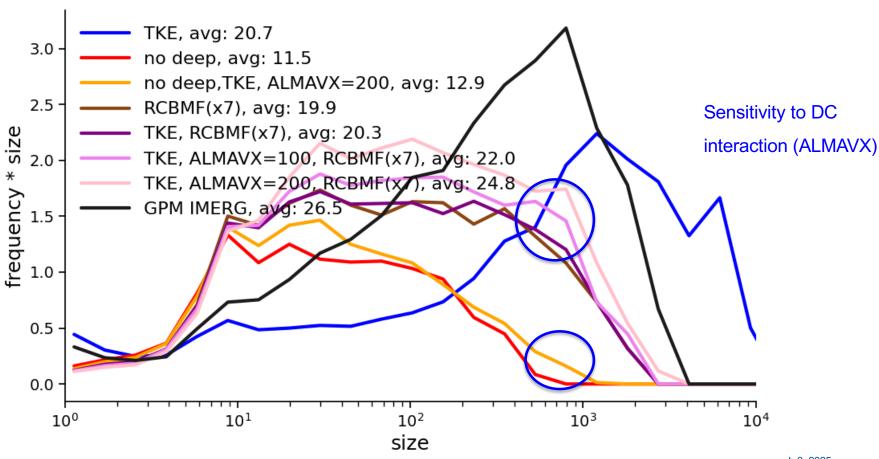

Evaluation:

- Overall large-scale scores show slight improvement at TCO399 compared to the operational setup
- Improvement in T, VW, and Z at 850 hPa and 700 hPa
- Tropics: a slight degradation at 100hPa of T (3%) and VW (1%), and TD (1.5%)
- Overall improvement in Europe
- Acceptable representation of StCu regions
- Low level jet (LLJ) representation improvement
- Fog representation improvement
- Interaction with deep convection



TKE scheme: Interaction with deep convection

Increase of turbulence length scale (L) in deep convection cloud (ALMAVX – maximal L in cloud)



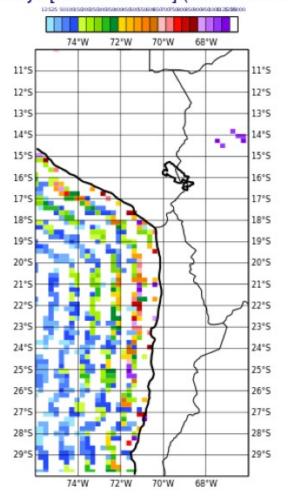
TKE scheme: precipitation in Tropics (TCO1279) Precipitation distribution:

TKE scheme: precipitation in Tropics (TCO1279)

Cluster size distribution:

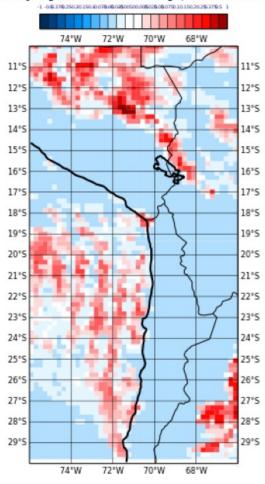
h 3, 2025

Additional slides



Waves in StCu region - Geopotential and relative tclw (compared to domain mean) - Tco399

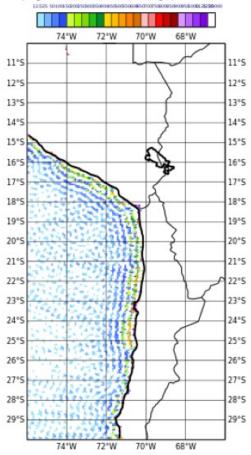
z [m^2/s^2]


Γ+48h. z [m²/s²]Mean: 15046.098 , STD: 17103.256 ^{DM})6-09 T+48h. Diff tclwMean: -0.000 , STD: 0.062

:XP: ibyk [control Tco399] (49r1.0 Tco1279)

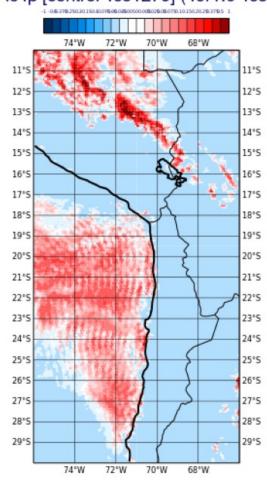
Diff tclw

EXP: ibyk [control Tco399] (49r1.0 Tco399)

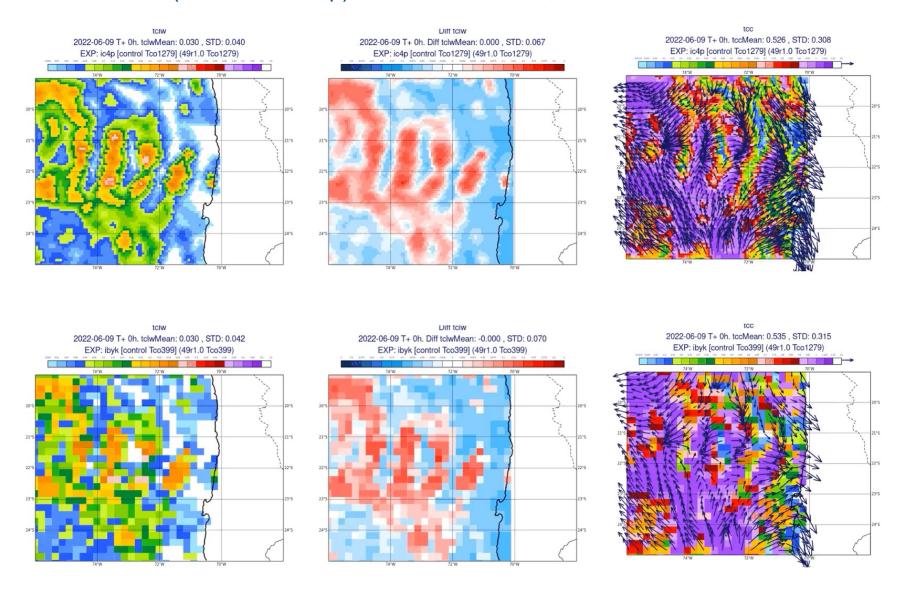


Waves in StCu region - Geopotential and relative tclw (compared to domain mean) - Tco1279

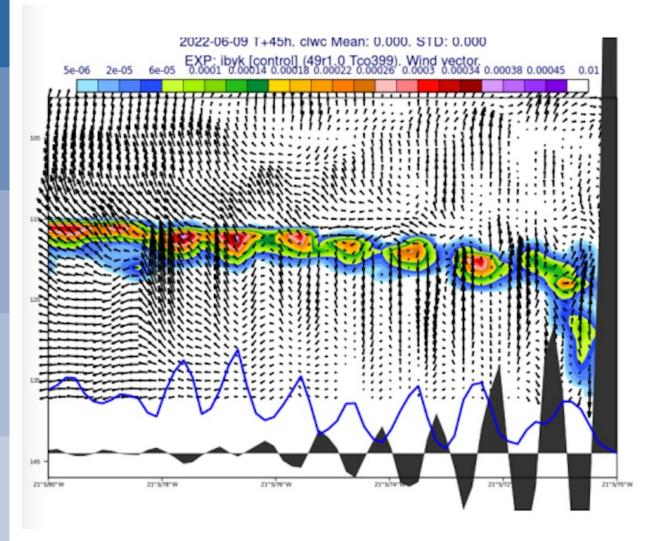
z [m^2/s^2]


Γ+48h. z [m^2/s^2]Mean: 15071.022 , STD: 17273.088

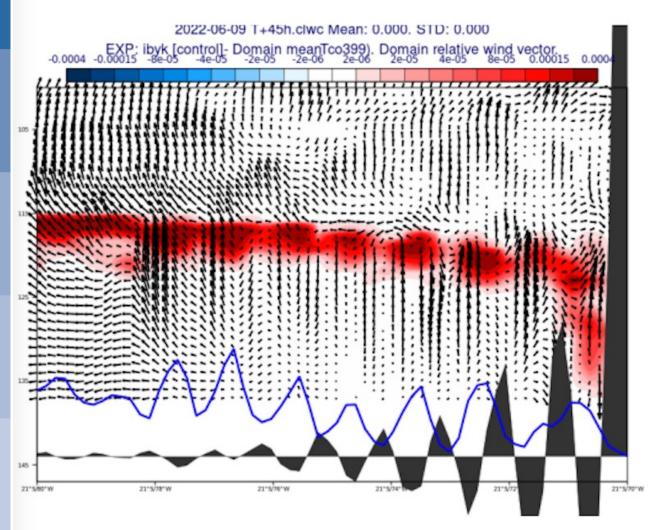
XP: ic4p [control Tco1279] (49r1.0 Tco1279)



DITT TCIW


)6-09 T+48h. Diff tclwMean: -0.000 , STD: 0.071 XP: ic4p [control Tco1279] (49r1.0 Tco1279)

Animation (1 hour time step) of tclw, relative tclw, and tcc – Tco399 vs Tco1279


Vertical cross-section along –21 deg latitude

- A Tco399 control experiment
- Color shades show clwc
- **Black** shading is the geopotential
- Blue line is tclw
- Arrows are wind vectors parallel to the cross section (vertical velocity is scaled by 50)
- Vertical coordinate is the model level

Vertical cross-section along –21 deg latitude

Vertical cross-section along –21 deg latitude

- A Tco399 control experiment
- Color shades show the departure of clwc to cross-section mean
- Black shading is the geopotential
- Blue line is tclw
- Arrows are relative wind vectors parallel to the cross-section (vertical velocity is scaled by 50, reference is cross-section mean wind vector)
- Vertical coordinate is the model level