Regional Cooperation for Limited Area Modeling in Central Europe

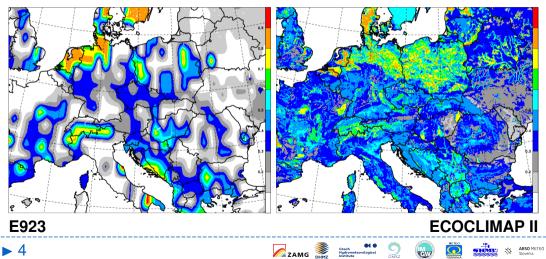
Tools for improving physiography in E923 clim files

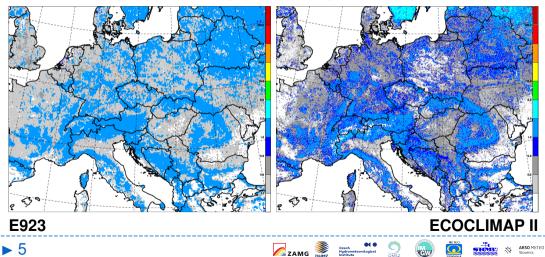
Ján Mašek (CHMI)

ogical

- The problem
- Temporary solution
- Update of surface roughness fields
- Implementation on belenos
- Update of subgrid-scale orography
- Update of other physiography fields
- Bonuses for climate runs
 - import of SST from NEMO
 - update of lake temperature
- Conclusions

- Before AROME era, model physiography was prepared by configuration E923.
- E923 datasets have a coarse resolution, common in 1990s, and sometimes questionable quality.
- After AROME with SURFEX entered NWP service, E923 developments stopped (no interfacing with ECOCLIMAP).
- Therefore, pre-SURFEX configurations cannot benefit from modern ECOCLIMAP physiography.
- Such situation is infavourable for ALARO, due to the long lasting problems with its switch to SURFEX.
- Some temporary solution was needed.




Sand fraction

Vegetation roughness length in July [m]

- One possibility is to update E923 clim files by selected fields extracted from SURFEX PGD file.
- ▶ This can be done by external tool, however:
 - care must be taken to respect different conventions, units, etc.
 - evolving physiography fields are constructed from PGD inputs only during the SURFEX integration
- ► Therefore:
 - the tool has to be thoroughly designed and validated
 - procedure updating E923 clim files involves one-step model integrations with SURFEX for 15th day of each month

- When horizontal resolution is increased, key improvement comes from more detailed model orography.
- Surface roughness lengths are also important, determining bottom boundary conditions for turbulent fluxes:

$$z_0^{ ext{eff}} = \sqrt{(z_0^{ ext{veg}})^2 + (z_0^{ ext{orog}})^2} \qquad z_{0 ext{H}} = z_0^{ ext{veg}}/10$$

To benefit from ECOCLIMAP II and GMTED2010 datasets, roughness lengths z₀^{veg} and z₀^{orog} can be extracted from PGD file and injected to E923 clim files.

- A new tool fa_sfx2clim updates the roughness lengths in E923 clim files consistently.
- Roughness lengths may require scaling and smoothing:

FACZ0– scaling factor for orographic roughnessFACZ0_VEG– scaling factor for vegetation roughnessNLISSZ– number of smoothings for orographic roughnessNLISSZ_VEG– number of smoothings for vegetation roughness

- fa_sfx2clim prevents chess-board pattern by using a Laplacian-like smoother, instead of problematic E923 one.
- The tree height can be adjusted in underlying SURFEX integrations via new namelist array XMUL_H_TREE(:).

The procedure was implemented on belenos: /home/gmap/mrpm/masekj/e923_update/

Necessary steps (see the README file):

- 1. run **climake** for your target domain (PGD step must be modified if you want to use ECOCLIMAP II physiography)
- 2. run EE927 to produce atmospheric coupling files
- 3. run FULLPOS-PREP to produce SURFEX init files
- 4. run set of one-step SURFEX integrations to get .sfx files
- 5. substitute roughness fields from .sfx files to E923 clim files
- Climake step is independent, the rest is automated—it is sufficient to edit the run script.

- Subgrid-scale orography is characterized by its standard deviation, anisotropy, and direction of the main axis.
- These quantities are needed by the parameterization of orographic drag and lift.
- ▶ In **E923** clim files they are calculated from **GTOPO30**.
- In PGD file they are calculated from GMTED2010.
- More reliable PGD fields can be injected to E923 by modified subroutine EINCLI1 during step 1b.
- EINCLI1 takes care about different PGD/E923 convetions for fields describing the subgrid-scale orography.

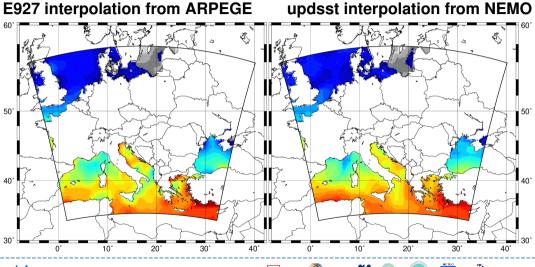
- Tool fa_sfx2clim can transfer all needed physiography fields from PGD and .sfx files to E923 clim files:
 - dominant vegetation index can be guessed from LSM and LAI
 - cheating with snow and vegetation fractions is needed to get SURFEX albedos of the bare ground and vegetation
 - for remaing fields the procedure is straightforward
- Significant impact of changed vegetation characteristics makes retuning exercise on ISBA side impractical.
- It will be more pragmatic to retune ALARO-1 with SURFEX, including not only ECOCLIMAP II physiography, but also new options like 3L soil scheme, TEB, FLAKE, ...

- In climate simulations, special care must be taken to SST, and also to lake temperatures if FLAKE model is not used.
 Two tools were created for this purpose:
 - updsst non-overshooting interpolation of SST from NEMO ocean model, avoding its contamination due to SURFEX tiling
 - updlake interpolation of lake temperature from surrounding SST, avoding use of climatological value from the nearest sea point
- Interpolation procedure updlake is now integrated in tool updcli.

- Tool updsst interpolates SST from NEMO grid to model grid using **inverse distance weighting** $w_i = 1/r_i^p$.
- > Powers p < 2 produce **bull eves**, while powers $p \gg 2$ are close to **nearest neighbour** interpolation.
- Reasonable compromise is a variant of modified Shepard's method (p = 2) with search radius *R*:

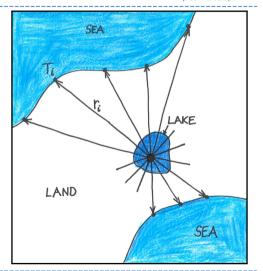
$$w_i = \max\left(\frac{1}{r_i^2} - \frac{1}{R^2}, 0\right)$$

For NEMO grid with resolution $\sim 1^{\circ}$, R = 150 km is used.



Bonuses: import of SST from NEMO

▶ 14



Bonuses: update of lake temperature

Tool updlake determines lake temperature from actual SST:

$$T^{\text{lake}} = \frac{\sum_{i} \frac{1}{r_i} T_i}{\sum_{i} \frac{1}{r_i}} - \Gamma$$
$$\Gamma = 6.5 \text{ K/km}$$

It is a poor man's solution, hopefully better than T_{lake} from E923 climatology.

- Procedure for updating roughness fields in E923 clim files from PGD file was developed and implemented on belenos \Rightarrow feel free to use it.
- **Tuning parameters** are scaling factors of the roughness lengths and tree height, plus the **numbers of smoothings**.
- Fields characterizing subgrid-scale orography can also be updated.
- More fields could be imported from PGD file, but the model needs extensive retuning when vegetation is touched.
- Preferable way is to switch ALARO to SURFEX when ready. and to make retuning with new options included.

Regional Cooperation for Limited Area Modeling in Central Europe

Thank you for your attention.

