
Guidelines for refactoring the

physics in view of GPU porting

Daan Degrauwe

ALARO-1 Working Days

13-15 June 2022, Prague

Background

● ECMWF: internal Hybrid24 project

● MeteoFrance: next procurement (end 2023)

● DestinE/DEODE: targeting ~200m resolution, relies on (GPU-powered)

EuroHPC infrastructure

● ACCORD:
○ maintain performance on existing machines!

○ Affect scientists as little as possible

○ Keep single code base

2

Aim of refactoring

Flexibility is key, esp. in the physics parameterizations

● In terms of granularity of parallel loops:
○ Support one big top-level OpenMP loop (current layout)

○ Support many smaller lower-level OpenMP/OpenACC loops

● In terms of target architecture

⇒ Use “smart” (i.e. accelerator-aware) data structures to avoid modifying entire

code when targeting new hardware

⇒ Use source-to-source transformation tools to adapt code to specific hardware:
■ Loop reordering

■ Annotation with accelerator directives

■ Array promotion/demotion

3

Status

Both types of flexibility are realized for ARPEGE physics by working on 3 fronts:

● Dataflow in top-level routines (CPG_DRV, CPG, MF_PHYS)

● Cleaning of MF_PHYS, extraction of APL_ARPEGE from APLPAR

● Mechanism to choose parallelization granularity at runtime

4

Status: smart data structures

Introduced at top-level (CPG_DRV/CPG)

Current code:

5

SUBROUTINE CPG_DRV

REAL :: PRE0F(NPROMA,NFLEVG,NBLK)

!$OMP PARALLEL DO

DO JKGLO = 1, KGPCOMP, YDGEOMETRY%YRDIM%NPROMA

IBL=(JKGLO-1)/YDGEOMETRY%YRDIM%NPROMA+1

CALL CPG(... , PRE0F(:,:,IBL), ...)

ENDDO

!$OMP END PARALLEL DO

END SUBROUTINE CPG_DRV

Status: smart data structures

Introduced at top-level (CPG_DRV/CPG)

New code:

6

MODULE CPG_TYPE_MOD

TYPE CPG_DYN_TYPE

REAL (KIND=JPRB), POINTER, CONTIGUOUS :: PREF (:, :) => NULL ()

TYPE (FIELD_3D), POINTER :: F_PREF => NULL ()

! ... other fields ...

END TYPE CPG_DYN_TYPE

END MODULE CPG_TYPE_MOD

Status: smart data structures

Introduced at top-level (CPG_DRV/CPG)

New code:

7

SUBROUTINE CPG_DRV

TYPE(CPG_PHY_TYPE):: YLCPG_DYN

LOGICAL :: LLPERSISTENT

CALL YLCPG_DYN%INIT (YDFIELDS%REGISTRY, YDCPG_OPTS=YLCPG_OPTS, PERSISTENT=LLPERSISTENT)

!$OMP PARALLEL DO FIRSTPRIVATE(YLCPG_DYN)

DO JKGLO = 1, KGPCOMP, YDGEOMETRY%YRDIM%NPROMA

IBL=(JKGLO-1)/YDGEOMETRY%YRDIM%NPROMA+1

CALL YLCPG_DYN%UPDATE_VIEW (BLOCK_INDEX=IBL)

CALL CPG(YDGEOMETRY, ... , YLCPG_DYN, ...)

ENDDO

!$OMP END PARALLEL DO

END SUBROUTINE CPG_DRV

Status: cleaning of MF_PHYS

● Use new data structures; also allows to get rid of LTWOTL

● Move calculations/subroutine

calls to APL_*

8

SUBROUTINE MF_PHYS

CALL MF_PHYS_PREP (...)

CALL MF_PHYS_INIT (...)

CALL YLMF_PHYS_BASE_STATE%INIT (...)

CALL YLMF_PHYS_NEXT_STATE%INIT (...)

IF (YDMODEL%YRML_PHY_MF%YRSIMPHL%LSIMPH) THEN

CALL APLSIM(...)

ELSEIF (YDMODEL%YRML_PHY_MF%YRARPHY%LMPA) THEN

CALL APL_AROME(...)

ELSEIF (YDMODEL%YRML_PHY_MF%YRARPHY%LAPL_ARPEGE) THEN

CALL APL_ARPEGE (...)

ELSE

CALL APLPAR (...)

ENDIF

END SUBROUTINE MF_PHYS

Status: extraction of APL_ARPEGE from APLPAR

● Partially manually, partially scripted, based on set of logical switches

● (Still contains calculations)

● Local arrays NOT encapsulated or transformed into FIELD_API structures

● Some computations/

subroutine calls

grouped into new

subroutines

9

SUBROUTINE APL_ARPEGE

[...]

CALL APL_ARPEGE_OCEANIC_FLUXES (...)

CALL APL_WIND_GUST (...)

CALL APL_ARPEGE_SHALLOW_CONVECTION_AND_TURBULENCE (...)

CALL APL_ARPEGE_ALBEDO_COMPUTATION (...)

CALL APL_ARPEGE_AEROSOLS_FOR_RADIATION (...)

CALL APL_ARPEGE_CLOUDINESS (...)

CALL APL_ARPEGE_RADIATION (...)

CALL APL_ARPEGE_SOIL_HYDRO (...)

CALL APL_ARPEGE_SURFACE (...)

[...]

END SUBROUTINE APL_ARPEGE

Status: parallelization granularity

● CPG is called with configuration string CDPART

● This allows to decide at runtime to keep coarse granularity (‘XXX’) or to split in
smaller parts (‘X00’,’0X0’,’00X’)

10

SUBROUTINE CPG(..., CDPART)

IF (CDPART(1:1) == ‘X’) THEN

CALL CPG_GP (...)

ENDIF

IF (CDPART(2:2) == ‘X’) THEN

CALL MF_PHYS (...)

ENDIF

IF (CDPART(3:3) == ‘X’) THEN

CALL CPG_DIA (...)

CALL CPG_DYN (...)

CALL CPG_END (...)

ENDIF

END SUBROUTINE CPG

Status: parallelization granularity

● Finer granularity at lower levels (MF_PHYS, APL_ARPEGE, below) is achieved

by preprocessing the code and generating *_PARALLEL.F90 files

11

SUBROUTINE MF_PHYS(...)

!=PARALLEL

CALL APL_ARPEGE(...)

!=END PARALLEL

END SUBROUTINE MF_PHYS

SUBROUTINE MF_PHYS_PARALLEL(...)

CALL APL_ARPEGE_PARALLEL(...)

END SUBROUTINE MF_PHYS_PARALLEL

Status: parallelization granularity

Other modifications done by preprocessor (Perl scripts based on fxtran Fortran

parser):

○ replace subroutine calls with calls to processed routines (identified by adding _PARALLEL to

their name).

○ replace raw Fortran arrays with FIELD API objects, set pointers to their data

○ add a loop over the NPROMA blocks;

○ add OpenMP directives around this loop;

○ add the NPROMA block enumerator to arrays in calculations and subroutine calls

12

Status: parallelization granularity

Example:

13

SUBROUTINE APL_ARPEGE(...)

REAL(KIND=JPRB) :: &

& ZDCAPE(YDCPG_OPTS%KLON)

!=PARALLEL

CALL ACEVADCAPE(ZDCAPE)

DO JLEV = 1, KFLEVG

DO JLON = KIDIA, KFDIA

ZQGM(JLON,JLEV)=ZEPSNEB

ENDDO

ENDDO

!=END PARALLEL

CALL APL_ARPEGE_RADIATION(...)

END SUBROUTINE MF_PHYS

SUBROUTINE APL_ARPEGE_PARALLEL

TYPE (FIELD_2D), POINTER :: YL_ZDCAPE

REAL(KIND=JPRB), POINTER :: ZDCAPE(:,:)

ZDCAPE => GET_HOST_DATA_RDWR (YL_ZDCAPE)

Z_YDMF_PHYS_OUT_UCLS => &

& GET_HOST_DATA_RDONLY (YDMF_PHYS%OUT%F_UCLS)

!$OMP PARALLEL DO PRIVATE (JBLK, JLEV, JLON, YLCPG_BNDS)

DO JBLK = 1, YDCPG_OPTS%KGPBLKS

YLCPG_BNDS = YDCPG_BNDS

CALL YLCPG_BNDS%UPDATE (JBLK)

CALL ACEVADCAPE(ZDCAPE(:,JBLK))

DO JLEV = 1, YDCPG_OPTS%KFLEVG

DO JLON = YLCPG_BNDS%KIDIA, YLCPG_BNDS%KFDIA

ZQGM(JLON,JLEV,JBLK)=ZEPSNEB

ENDDO

ENDDO

ENDDO

CALL APL_ARPEGE_RADIATION_PARALLEL(...)

END SUBROUTINE APL_ARPEGE_PARALLEL

Status: parallelization granularity

Notes on preprocessor approach:

● Flexibility in terms of parallelization granularity: fine granularity now amounts to 80 separate OpenMP
loops for APL_ARPEGE, but this can be changed by merging/splitting “!=PARALLEL” regions

● Preprocessing is only necessary when targeting non-CPU machine

● Code changes on development code are rather limited*:

○ No FIELD_API objects, just raw Fortran arrays

○ Adding !=PARALLEL directives

● No overhead (memory/walltime) due to FIELD_API objects

* but not inexistent; see guidelines later

14

Performance

3 experiments with ARPEGE on TL1798L105 grid

15

Reference Persistent Parallel

CPG DO JBLK=1,NBLK

CALL CPG_GP

CALL MF_PHYS

CALL CPG_DIA

! …

ENDDO

DO JBLK=1,NBLK

CALL CPG_GP

ENDDO

DO JBLK=1,NBLK

CALL MF_PHYS

ENDDO

DO JBLK=1,NBLK

CALL CPG_DIA

! …

ENDDO

DO JBLK=1,NBLK

CALL CPG_GP

ENDDO

CALL MF_PHYS_PARALLEL

DO JBLK=1,NBLK

CALL CPG_DIA

! …

ENDDO

MF_PHYS/

MF_PHYS_PARALLEL

CALL APL_ARPEGE CALL APL_ARPEGE CALL APL_ARPEGE_PARALLEL

APL_ARPEGE/

APL_ARPEGE_PARALLEL

!=PARALLEL

CALL ACEVADCAPE

!=END PARALLEL

CALL APL_ARPEGE_RADIATION

!=PARALLEL

CALL ACEVADCAPE

!=END PARALLEL

CALL APL_ARPEGE_RADIATION

DO JBLK=1,NBLK

CALL ACEVADCAPE

ENDDO

CALL APL_ARPEGE_RADIATION_PARALLEL

Performance

3 experiments with ARPEGE on TL1798L105 grid

The conclusion here is NOT that refactoring decreases performance!

The 3 experiments were carried out with the same executable, i.e. increased
walltime/memory is only felt by fine-grained parallelization configuration!

16

Experiment RSS

memory

Walltime (s) Walltime w/o setup (s)

Reference 1725 169 133

Persistent 2240 162 144

Parallel 2641 185 165

Guidelines
ARPEGE physics refactoring exercise resulted in the following guidelines*

● Avoidance of all module variables.

● Avoidance of ALLOCATABLE arrays inside the physics

● All output arrays and local arrays should have dimension NPROMA. Allocation and initialization of arrays that
do not satisfy this constraint (e.g. ZVETAH, which characterizes the vertical coordinate) should be moved to
the setup, instead of being done inside the gridpoint calculations.

● Constant YDMODEL and YDGEOMETRY

● Use of homogeneous notations throughout the code (esp. loop variables and loop bounds)

● Single routine per file (both for routines inside modules and for routines inside other routines). A possible
workaround is a preprocessing script which inlines the contained subroutine.

* Not all of these are to be taken too strictly

17

Timeline

● All above phased into cy48t3, to be declared by end-June

● cy49 build:

○ start immediately after declaration of cy48t3

○ declaration by end-September

● cy49t1

○ contribution window: October 2022 – January 2023

○ (AROME refactoring status by Jan 2023 not clear)

● For ALARO:

○ Refactoring/cleaning is not urgent per se, can be done progressively

○ Keep ISBA in refactored code?

○ What about other ongoing scientific ALARO developments?

○ Organize working week still in 2022

18

Conclusions

● Impressive progress on ARPEGE refactoring

● Satisfying important constraints:

○ No negative impact on performance on CPU machines

○ Limited modifications in low-level scientific code

○ Flexibility of parallelization granularity

● Relying on code preprocessor to adapt code for fine-grained parallelism

● Setting track for LAM configurations

19

APLPAR

20

