
Code Refactoring and cleaning
for ALARO physics

Martina Tudor

Regional Cooperation for
Limited Area Modelling in Central Europe

Overiview
Many reasons:
- new coding structures introduced by ECMWF,
- GPU adaptation,
- long subroutines hardly understandable

Work for ALARO to be based on the ARPEGE work of Philippe
Marginaud

TO DO:
- have a separate aplpar for each physics package -> aplpar_alaro
- introduce new coding structures
- remove computations from mf_phys and aplpar_alaro
- adapt the code to go through automated GPU adaptation procedure

Code cleaning and APLPAR splitting
Physics calls are organized in MF_PHYS and APLPAR subroutines
 - physics is one OpenMP loop
 - too complex for for ttransformation to GPU code
 - hard to use/modify/learn
 - contains computations, allocations, variable definitions and many
subroutine calls
MF_PHYS
– local computations moved to subroutines
APL_ARPEGE
- only calls to different subroutines
- all computations moved to subroutines
- uses encapsulated data (no modules)
- new data structures do not go below this level (EMCWF did
differently)

New coding stuctures

- only one subroutine per file (acraneb2)

- only NPROMA arrays (no ZVARH(0:KLEV) or ZVARF(KLEV))
- no module variables (no more use YOMPHY, ONLY : ...)

- moved them to a specific data structure
- no ALLOCATABLE arrays

- everything is allocated at a single place before phy (memory)
- all output arguments should be NPROMA arrays
- new notations

APLPAR split done for ARPEGE
apl_arpege_aerosols_for_radiation.F90
apl_arpege_albedo_computation.F90
apl_arpege_atmosphere_update.F90
apl_arpege_cloudiness.F90
apl_arpege_deep_convection.F90
apl_arpege_dprecips.F90
apl_arpege.F90
apl_arpege_hydro_budget.F90
apl_arpege_init.F90
apl_arpege_init_surfex.F90
apl_arpege_oceanic_fluxes.F90
apl_arpege_precipitation.F90
apl_arpege_radiation.F90
apl_arpege_shallow_convection_and_turbulence.F90
apl_arpege_soil_hydro.F90
apl_arpege_surface.F90
apl_arpege_surface_update.F90

APL_ARPEGE calls
CALL CPPHINP
CALL MF_PHYS_FPL_PART1
 CALL MF_PHYS_SAVE_PHSURF_PART1
CALL APLPAR_INIT
 CALL CHECKMV
CALL APL_ARPEGE_INIT
CALL ACTQSAT
 CALL ACSOL &
CALL APL_ARPEGE_INIT_SURFEX
 CALL ACHMTLS
 CALL ACHMT
CALL ACCLPH
CALL APL_ARPEGE_OCEANIC_FLUXES
CALL APL_WIND_GUST
CALL APL_ARPEGE_SHALLOW_CONVECTION_AND_TURBULENCE
CALL APL_ARPEGE_ALBEDO_COMPUTATION
CALL APL_ARPEGE_AEROSOLS_FOR_RADIATION
CALL APL_ARPEGE_CLOUDINESS
CALL APL_ARPEGE_RADIATION
CALL APL_ARPEGE_SOIL_HYDRO
CALL APL_ARPEGE_SURFACE
 CALL ACDNSHF &
CALL ACDRAG
 CALL ACPLUIS (

CALL APL_ARPEGE_DEEP_CONVECTION
CALL APL_ARPEGE_PRECIPITATION &
CALL QNGCOR
CALL APL_ARPEGE_HYDRO_BUDGET
CALL ACDRME
 CALL APLPAR_FLEXDIA
 CALL ACEVADCAPE
 CALL ACCLDIA
CALL ACVISIH
CALL PPWETPOINT &
CALL APL_ARPEGE_DPRECIPS
CALL MF_PHYS_MOCON
 CALL MF_PHYS_CORWAT
 CALL CPQSOL
CALL APL_ARPEGE_ATMOSPHERE_UPDATE
CALL MF_PHYS_FPL_PART2
CALL MF_PHYS_TRANSFER
CALL APL_ARPEGE_SURFACE_UPDATE
 CALL MF_PHYS_SAVE_PHSURF_PART2
CALL MF_PHYS_BAYRAD
CALL MF_PHYS_PRECIPS

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

This part of aplpar
Now in
apl_arpege_init

New version of APLPAR and APL_ARPEGE

apl_arpege

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

New version of APLPAR and APL_ARPEGE

New version of APLPAR

Put this part of aplpar
Into a subroutine ...

New version of APLPAR

And this one too

New version of APLPAR

APLPAR split to do for ALARO
APLPAR is still there!
Initial step can be done automatically with a namelist provided
BUT
 - we use multiple physics options operationally (A-LAEF)
 - we want to leave some options (pTKE)
 - can a ‘namelist’ with all usefull switches on (that would never work for
running) be used?
 - after the automatic step, still lot of work to do manually

We also need an ‘init’ routine (and other helper type routines)

Do we want to create apl_alaro_turb, apl_alaro_deep_cnv ...
 - at this point?
 - maybe later?
 - different answer for different parts

CPG and CPG_DRV refactoring
- allows different parts of CPG to be
called in different
OpenMP loops.
Currently:

!$OMP PARALLEL DO
DO JBLK=1,NBLK
CALL CPG_GP
CALL MF_PHYS
CALL CPG_DIA
CALL CPG_DYN
CALL CPG_END
ENDDO
!$OMP PARALLEL DO

!$OMP PARALLEL DO
DO JBLK=1,NBLK
CALL CPG_GP
ENDDO
!$OMP PARALLEL DO
DO JBLK=1,NBLK
CALL MF_PHYS
ENDDO
!$OMP PARALLEL DO
DO JBLK=1,NBLK
CALL CPG_DIA
CALL CPG_DYN
CALL CPG_END
ENDDO

CPG and CPG_DRV refactoring

CPG gets an argument that defines
the configuration.
This argument defines
 - if the different parts are executed in
a single call to cpg
 - or in separate subsequient calls to
CPG.
This allows the decsion on which loop
structure to use at runtime.

!$OMP PARALLEL DO
DO JKGLO = 1, NGPTOT, NPROMA
! cpg_gp.F90
CALL CPG (..., CDPART=”X00”)
ENDDO

!$OMP PARALLEL DO
DO JKGLO = 1, NGPTOT, NPROMA
! mf_phys.F90
CALL CPG (..., CDPART=”0X0”)
ENDDO

!$OMP PARALLEL DO
DO JKGLO = 1, NGPTOT, NPROMA
! cpg_dia/dyn/end.F90
CALL CPG (..., CDPART=”00X”)
ENDDO

CPG and CPG_DRV refactoring

CPG gets an argument that defines
the configuration.
This argument defines
 - if the different parts are executed in
a single call to cpg
 - or in separate subsequient calls to
CPG.
This allows the decsion on which loop
structure to use at runtime.

!$OMP PARALLEL DO
DO JKGLO = 1, NGPTOT, NPROMA
! cpg_gp.F90
CALL CPG (..., CDPART=”X00”)
ENDDO

!$OMP PARALLEL DO
DO JKGLO = 1, NGPTOT, NPROMA
! mf_phys.F90
CALL CPG (..., CDPART=”0X0”)
ENDDO

!$OMP PARALLEL DO
DO JKGLO = 1, NGPTOT, NPROMA
! cpg_dia/dyn/end.F90
CALL CPG (..., CDPART=”00X”)
ENDDO

Memory consumption increase

REAL :: X(NBLK)
REAL :: Y(NBLK)
DO JBLK=1,NBLK
X(JBLK)=JBLK
ENDDO
DO IBLK=1,NBLK
Y(JBLK)=X(JBLK)
ENDDO

When splitting a loop any variable that is passed between the different
parts must be allocated with an extra dimension. In the example below,
when a loop is split, it is necessary to make X an array. This increases
memory consumption.

REAL :: X
REAL :: Y(NBLK)
DO JBLK=1,NBLK
X=JBLK
Y(JBLK)=X
ENDDO

Discussion

mf_phys and apl_alaro

ECMWF moved

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

