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The role of the mixing length in TOUCANS

▶ Mixing length (ML) is a crucial quantity in ”TKE/TTE - L” type of closure - dimension of
the most energetic turbulence eddies

▶ TOUCANS distinguishes several turbulence length scales (TLS), i.e. eddy diffusivity
scales for momentum (LK), heat/moisture (LH) and molecular dissipation scale (Lϵ),
which are related through the main/master length scale (Ln)

▶ The choice of the ML/TLS formulation is more or less independent of the scheme
being used (surface layer is a bit specific)

▶ Currently in the code there are three different formulations (EL0 - Lgc, EL1 - LBS and
EL2 - LBS + LBSloc

)
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The role of the mixing length in TOUCANS
▶ The relationship between LK , Lϵ and Ln is stability-dependent and given in Mašek et.

al. (2021):

LK = LnF
1
3
ϵ , Lϵ =

Ln

Fϵ
, Fϵ =

[
1−Rif
χ3(Rif )

] 3
4

(1)

▶ Additionally, the direct relationship between LK , Lϵ and Ln can be made:

Ln =
(
L3
K · Lϵ

) 1
4 −→ L =

Cϵ

ν3
lm, ν = (CKCϵ)

1
4 (2)

lm is Prandtl type mixing length (from MOST) - important for scaling issue (later)

▶ When stability-dependence between ML/TLS is included:

KM = CKLKχ3
√
ek, KH = CKLHϕ3

√
ek, LH = C3LK (3)
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The role of the mixing length in TOUCANS

▶ Computation of turbulent fluxes above the surface layer:

u′w′ = −KM
∂u

∂z
, v′w′ = −KM

∂v

∂z
(4)

s′Lw
′ = −KH

∂sL
∂z

+ TOMs, q′tw
′ = −KH

∂qt
∂z

+ TOMs (5)

▶ Computation of turbulent fluxes in the surface layer:

(w′ϕ′)s = Cϕ

√
(u2 + v2)[ϕ(z)− ϕs] (6)

CM = CMNFM (Ri), CH = CHNFH(Ri) (7)

CMN =

 κ

ln
(
1 + z

z0m

)
2

, CHN =

 κ2

ln
(
1 + z

z0m

)
ln
(
1 + z

z0h

)
 (8)
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Departure from the original proposal (EL1)

▶ Generalized BL89 formulation - Rodier et al. (2017):∫ z+Lup

z

[
g

θv(z′)
(θv(z

′)− θv(z)) + c0
√

e(z′)S(z′)

]
dz′ = e(z) (9)

∫ z

z−Ldown

[
g

θv(z′)
(θv(z)− θv(z

′)) + c0
√
e(z′)S(z′)

]
dz′ = e(z) (10)

▶ 6



Departure from the original proposal (EL1)
▶ Imposing the κz limit in the surface layer (old way):

lm = min(κz,
ν3

Cϵ
L

TKE
), L

TKE
=
√

Lup · Ldown (11)

▶ Smooth transition from the near-surface κz layer to the aloft layer where pure L
TKE

solution prevails (new way):

lm = fw · κz + (1− fw) · κLTKE
(12)

fw = 3 · f
′2
w − 2 · f

′3
w , f ′

w = max

[
0,min

(
1,

c2 −
z
H

H
PBL

c2 − c1

)]
, c2 > c1 (13)

scaling L
TKE

with κ is in agreement with LES diagnostics - Reilly et al. (2022)
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Departure from the original proposal (EL1)

fw function

BSmin - eq.(11); BSsmo - eq.(12) with ν3

Cϵ
LTKE ; BSsmn - eq.(12)
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Further improvement of the new proposal
▶ TKE-based formulation given by eq. (9)-(10) and (12)-(13) suffers from insufficient

mixing near the PBL top (improvement is necessary)

▶ The crossing parcels (CP) treatment - Golaz et al. (2002):

Lup = max[Lup(i), Lup(i+ 1)−∆z] (14)

Ldown = max[Ldown(i), Ldown(i− 1)−∆z] (15)

▶ Variable upper-air asymptotic limit (VUAL):

L
TKE

= max(L′
TKE

, c3 · LTKE−max
) (16)

L
TKE

’ - non-corrected L
TKE

; L
TKE−max

- column max. value; c3 - tunable parameter
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Further improvement of the new proposal

▶ The impact of CP and VUAL: ▶ The new averaging operator:

L
TKE

=

L− 5
4

up
+ L

− 5
4

down

2

− 4
5

(17)

BSsmn - as previous

BScp - as BSsmn + CP - eq. (14)-(15)

BScpao - as BScp + new AO - eq. (17)

BSvual - as BScpao + VUAL (c3=0.225)
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Do we have a final solution?
▶ We have all the necessary ingredients, but need to find an optimal ”internal” tuning (c0,

��ZZc1, c2, c3, AO and H
PBL

computation)

▶ Verification scores for TKE-based ML formulation with global κ scaling are comparable
to the reference (EL0) - some tuning of: 1) convection and cloud schemes and 2)
land-surface to atmosphere coupling might be necessary

▶ Can we improve something else?

1) The H
PBL

computation (significantly affects all ML/TLS formulations)

2) Utilize the work of Bašták Ďurán et al. (2022.) to modify the upper asymptotic value
of L

TKE
(based on the bulk ∆θs) and represent the top PBL entrainment

3) Consider inhomogeneous grid-box and two parcels ascending/descending in
different environments
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The impact of the PBL height on ML
▶ Geleyn-Cedilnik formulation (more sensitive than TKE-based):

LGC
n =

ν

CK

κz

1 + κz
λm

[
1+exp(−am

√
z

HPBL
+bm)

βm+exp(−am

√
z

HPBL
+bm)

] (18)
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Computation of the PBL height

▶ There is no such method that estimates the H
PBL

accurately enough for different
stability conditions

The weak-capping-inversion method:

⟨θ(z)⟩
L
≥ 1

z

∫ zi

0

⟨θ(z)⟩dz + 0.25 (19)

convective and near-neutral PBL

Ayotte et al. (1996)

TKE-based method:

H
PBL

=
z05
0.95

(20)

more general (suitable for

statically stable cond.)

Kosović and Curry (2000)
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Computation of the PBL height

WCIM
method

TKE-based
method
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Computation of the PBL height

▶ WCIM provides unrealistic values in statically stable conditions, while TKE-based
method is characterized by grainy patterns

▶ Can a combination of two methods work?

▶ We need a more robust method, e.g. Bastak et al. (2022):

H
PBL

= c
pblh

·

√∫ ztop

z=0

Lup · dz, c
pblh

= 1.75 (21)

Lup depends on stratification and turbulence within entire model column

▶ 15



Towards the 3D turbulence and grey zone

▶ The existing turbulence schemes in NWP models are intended for use in horizontally
homogeneous and flat terrain (1D)

▶ At ∆x ≈ 1 km and in complex (mountainous) terrain the turbulence intensity is typically
underestimated - need for 3D effects

▶ Furthermore, at ∆x ≈ 1 km we are within the gray zone (turb. is partly resolved) - need
to take care of partitioning between TKEres and TKEsbg
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Towards the 3D turbulence and grey zone

▶ The hybrid turbulence scheme (quasi-3D) - Goger et al. (2018, 2019):

dek
dt

= −g
∂

∂p

(
ρKek

∂ek
∂z

)
+ I + II −

e
3
2

k

τk
(22)

det
dt

= −g
∂

∂p

(
ρKet

∂et
∂z

)
+ I − e

3
2
t

τt
(23)

I = −u′w′ ∂u

∂z
− v′w′ ∂v

∂z
− u′u′ ∂u

∂x
− u′v′

∂u

∂y
− u′v′

∂v

∂x
− v′v′

∂v

∂y
(24)

II = EssLssL
′w′ + Eqtqt

′w′ (25)
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Towards the 3D turbulence and grey zone
▶ The hybrid turbulence scheme (quasi-3D) - Goger et al. (2018):

∂

∂t
(ek,t)

hshear
= (cs∆x)

2 ·

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂u

∂y
+

∂v

∂x

)2
] 3

2

(26)

L
H
= cs∆x, cs = 0.2 (27)

Smagorinsky (1963)

▶ Variable horizontal length scale (L
H

) - Goger et al. (2019):

L
H
= W · T

L,u,v
, T

L,u,v
= 0.15

H
PBL

σu,v
(28)

W - mean wind speed, T
L,u,v

- Lagrangian integral time scale
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Towards the 3D turbulence and grey zone
▶ Variable horizontal length scale (L

H
) - Goger et al. (2019):

σ2
u = u2

∗

[(
5− 4

z

H
PBL

)
+0.35

(
H

PBL

κL

) 2
3

]
, σ2

v = 2u2
∗

(
1− z

H
PBL

)
(29)

inapplicable above the PBL + based on specific dataset (alternative within TOUCANS)

* additional term in statically unstable conditions

▶ Variable horizontal length scale (L
H
) - Wang et al. (2021):

L
Hshr

= sW

[(
∂v

∂x

)2

+

(
∂u

∂y

2)]− 1
2

, L
Hstr

= sW

[(
∂u

∂x

)2

+

(
∂v

∂y

2)]− 1
2

(30)

s =

(
∆0

∆

)α

, L
H
=
√

L
Hshr

L
Hstr

(31)
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Towards the 3D turbulence and grey zone
▶ status:

1) Goger et al. (2018) proposal and Wang et al. (2021) additional option for L
H

are
coded in CY43t2 ag branch at CHMI (stable and gradually developing solution) -
validation is ongoing

2) There is ongoing work on implementation of modified Goger et al. (2019) proposal,
with σu,v computed from TOUCANS

▶ future work:
1) Validation of hybrid turbulence scheme and seeking for optimal L

H
option

2) Implementation of optimal LH option into 1D+2D turbulence scheme based on
SLHD and its validation

3) Adaptation of TOUCANS for the grey zone (scale-aware scheme) - following Boutle
et al. (2014), Honnert et al. (2011, 2020) and Honnert (2019)
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Conclusions

▶ TKE-based formulation (EL1) is now more or less comparable to the
reference (EL0)

▶ There is a significant tuning potential within the existing EL1 code and
still some room for development (some options might take more time)

▶ Improvement of H
PBL

estimation is an important short/mid-term goal,
with implication to all ML formulations

▶ Developments of TKE-based ML and H
PBL

computation can be used for
creation of horizontal ML/TLS to improve the model performance in the
grey zone (”terra incognita”)
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