

ACRANEB2 - current status and plan

Ján Mašek, CHMI

ALARO-1 Working Days

Bratislava, 11-13 March 2019

Introduction

- at previous ALARO-1 working days, all key ACRANEB2 components were finished
- focus in ALARO-1 developments has moved to cloud, turbulence and surface parameterizations
- this year, ACRANEB2 presentation will be **short**

Addressing of previous challenges (set in September 2016)

- using microphysical condensates and layer cloud fractions in radiation [ongoing, preparatory steps started in 2018]
- improving gaseous transmissions in the stratosphere [postponed, low priority]
- parameterizing impact of clouds on the broadband surface albedo [postponed]
- parameterizing 3D cloud effects in 1D radiative transfer [put aside, questionable at cloud resolving scales]
- parameterizing optical properties of falling hydrometeors [postponed, weak expected impact]
- taking into account orographic effects on surface radiation budget [waiting for ALARO-1 with SURFEX]
- using near real time aerosol distribution and optical properties [postponed]

Novelties since the last ALARO-1 Working Days

- **optimized last model timestep** when intermittency is on, available in cy43t2_export and since cy45t1
- **new products** on APLPAR side, available since cy46t1:

parameter	activation key		structure	default FA name	
	and namelist				
global normal irradiance	LRAYS	NAMCFU	GFP_CGNI	'SURFGLB NORM IRR'	
mean radiant temperature	LXMRT	NAMXFU	GFP_XMRT	'CLSMEAN.RAD.TEMP'	

- discussed better way of diagnosing apparent direct solar flux (P. Räisänen)
- first steps done towards unified cloud treatment (ACNEBN versus ACNEBCOND)
- verification against measurements of CHMI radiation network extended by hourly scores (so far only daily totals were verified)

Publications

- ACRANEB2 scheme is now described by two papers in QJRMS, that can serve as scientific documentation:
 - shortwave ACRANEB2 paper published in January 2016 (DOI:10.1002/qj.2653)
 - longwave ACRANEB2 paper published in April 2017 (DOI:10.1002/qj.3006)
- moreover, Ph.D. thesis devoted to ACRANEB2 developments was defended in December 2017 at Charles University:

https://dspace.cuni.cz/bitstream/handle/20.500.11956/94155/140061419.pdf

ACRANEB2 performance in ALADIN/CHMI operational suite

- daily downward surface fluxes are regularly verified against CHMI radiation network
- scores from the last 3 years show persisting problem during cold season in the Czech basin – strong bias and increased random error of global radiation
- overestimated global radiation indicates insufficient cloud cover
- problem is caused by lacking low sub-inversion clouds

Scores of daily global radiation (year 2016, day 1, 19 CZ stations)

Scores of daily global radiation (year 2017, day 1, 19 CZ stations)

Scores of daily global radiation (year 2018, day 1, 19 CZ stations)

ACRANEB2 performance in ALADIN/CHMI high resolution parsuite

- in January 2019, parsuite on 2.3 km horizontal resolution was started
- hourly radiation scores were evaluated and compared against 4.7 km oper suite
- they revealed increased positive bias and slightly higher random error of global radiation
- retuned cloud scheme supporting sub-inversion clouds on ACNEBN side reduced bias to original level
- higher random error remains, its origin is not yet understood

Scores of hourly global radiation (10.1.–6.2.2019, day 1 forecast, 19 CZ stations)

4.7 km oper suite2.3 km double suite

2.3 km double suite, retuned cloud scheme

Cost reevaluation on the new CHMI computer

- ACRANEB2 scheme saves CPU cost by **intermittent update** of gaseous transmissions, while keeping timely update of clouds
- intermittency significantly reduces the amount of ACRANEB2 calculations, but it requires **memory storage** of several 3D fields
- efficiency of intermittent approach is restricted by **memory latency**, therefore it depends on machine architecture and topology
- in January 2018, CHMU switched operations from vector NEC SX-9 to scalar NEC LX platform (full installation available since May 2018):

platform	nodes	CPUs /node	processor type	cores	memory /node
NEC SX-9	2	16	single chip vector		1 T B
NEC LX	320	2	Intel Broadwell	12	64 GB

• gain due to selective intermittency must be reevaluated

Gain due to selective intermittency

- CHMI oper suite uses 1 h/3 h update of gaseous transmissions
- on NEC SX-9 machine, it reduced cost of radiation by factor **21.7**
- on NEC LX machine, similar reduction by factor **20.6** is reached:

		update frequency of		relative CPU cost		
Δx	Δt	gaseous transmissions		radiation	model	
		shortwave	longwave	(% of model)		
4.7 km	180 s	1 h	1h/3h	1.00 (14.2%)	1.00	
		180 s	1h/3h	1.16	1.02	
		180 s	180 s	20.6	3.77	
2.3 km	90 s	1 h	1h/3h	1.00 (5.5%)	1.00	
		90 s	1h/3h	1.62	1.03	
		90 s	90 s	34.1	2.81	

- \bullet move to horizontal resolution 2.3 km (keeping 87 levels) increases saving factor to $\bf 34.1$
- due to activation of NH dynamics, radiation in 2.3 km ALARO-1 takes only 5.5% of the model cost

Alternatives to ACRANEB2 radiation

- old ACRANEB scheme
 - simple gaseous transmissions, intermittency not applied
 - not developed any longer, remains part of ALARO-0
- old ECMWF radiation (FMR in shortwave, RRTMG in longwave)
 - longwave part based on CKD method, requires full intermittency
 - still used in ARPEGE (hourly) and AROME (every 15 min)
 - 15 min use in 2.3 km ALARO-1 takes 4.6% of the model cost
 - not developed any longer
- new ECMWF radiation (McRad and recently ecRad)
 - based on CKD method (RRTMG), requires full intermittency
 - not yet interfaced to MF physics
 - ecRad is most advanced scheme, modular and optimized
- $\circ\,$ old HIRLAM radiation scheme HLRADIA
 - cheap and simple scheme, intermittency not applied
 - available in h-cycles, but not yet in t-cycles

Short term plan

- further modularization of ACRANEB2 solver, enabling diagnostics of clearsky fluxes with little computational overhead (promised for cy46t1, delayed)
- calculation of apparent direct solar flux according to idea of Mauno et al. (2011)
- impact of clouds on the broadband surface albedo following Gardner and Sharp (2010)
- radiative effect of falling hydrometeors
- development of ACRANEB2 single precision version

Longer term challenges

- unified cloud treatment in ALARO-1 (ongoing)
- improved stratospheric gaseous transmissions
- use of near real time aerosols in radiation
- pilot study of resolved 3D radiative effects and their relevance for cloud resolving NWP