

ALARO-1 Experience in Turkey

ALARO-1 WD 11-13 March 2019, Bratislava

Turkish State Meteorological Service Duygu Aktaş

HPC Systems at TSMS

SGI ICE XA (Water cooled) System	
CPU	Intel Xeon E5 2690-v4
Number of processer & Processor speed	4032 core, 2.6 GHz
Peak Performance	~ 167 Tflops
Core Memory	27 TB
Operating System	LINUX (SLES 12)
Compilers	INTEL, GNU
Common File System	Lustre
Internal Connection Technology	Omnipath (100 Gbps)
Operation Technology	PBS Professional

Operational Use of ALARO-1 at TSMS

- Operational Model (cy40t1bf7) <u>Model geometry:</u>
- 4.5 km horizontal resolution
- ➢ 450 X 720 grid points
- ➢ 60 vertical model levels
- Linear spectral truncation
- Lambert projection

Forecast settings:

- Digital filter initialization
- 180 sec time-step
- Hourly post-processing
- 4 runs per day at 00, 06, 12 UTC (up to t+72) and 18 UTC (up to t+60).
- Coupling with ARPEGE LBC files at every 3 hours

Current Data Assimilation Status at TSMS

ALARO CY40T1	4.5km, 60 levels, 450x720, lbc files from ARPEGE
Conventional Observations	SYNOP GTS&Local, TEMP Local, AMDAR GTS
Non-Conventional Observations	AMSUA, AMSUB-MHS NOAA18-19 & METOP1-2 SEVIRI METEOSAT 11 AMV METEOSAT
Surface Assimilation	CANARI
Upper-air Assimilation	3DVAR
Operational Cycling	6hr cycling 00 06 12 18 network times, Surface analysis then upper air analysis, 48 hr forecasts 24hr VarBC cycling
B-Matrix	Ensemble B matrix calculated from AEARP both for summer and winter period Cy43t2
Latest Activities	Obsmon was installed and tested with provided observations. Surface DA exercise on beaufix has not completed.
Plans	New cycle cy43t2 will be used for assimilation in ALARO.

Distribution of the Observations in DA

Observation Monitoring

Verification Results-I

ALARO-1 with DA vs. Non-DA

Verification Results-I

Operational ALARO-1 ALARO-1 3DVar

> Test period :: 2018/08/01 - 2018/12/01

Surface :

- 2 m. Temperature,
- 2 m. Dewpoint Temperature
- ► Upper Level:
 - Temperature,
 - Dewpoint Temperature
 - Relative Humidity

Standard Deviation & BIAS

2 m. Temperature

2 m. Dewpoint Temperature

2m Temperature Scatterplot

2m Dewpoint Temperature Scatterplot

Upper Air: Standard Deviation & BIAS

Temperature

7 stations Selection: ALL Temperature Period: 20180801-20181201 Statistics at 00 UTC Used {00} + 24 48

Dewpoint Temperature

7 stations Selection: ALL Dew point temperature Period: 20180801-20181201 Statistics at 00 UTC Used {00} + 24 48

hPa

No cases

Upper Air: Standard Deviation & BIAS

Relative Humidity

7 stations Selection: ALL Relative Humidity Period: 20180801-20181201 Statistics at 00 UTC Used {00} + 24 48

Verification Results-II

ALARO-1 coupled to IFS vs. ARPEGE

Verification Results-II

ALARO-1 3DVar with ARPEGE ALARO-1 3DVar with IFS

Test period :: 2018/08/01 - 2018/12/01

Surface :

- 2 m. Temperature,
- 2 m. Dewpoint Temperature
- ► Upper Level:
 - Temperature,
 - Dewpoint Temperature
 - Relative Humidity

Standard Deviation & BIAS

2 m. Temperature

2 m. Dewpoint Temperature

2m Temperature Scatterplot

Scatterplot for 115 stations Selection: ALL T2m [deg C] Period: 20180801-20181201 Used {00} + 03 06 ... 48

ARPEGE

IFS

2m Dewpoint Temperature Scatterplot

Upper Air: Standard Deviation & BIAS

Temperature

7 stations Selection: ALL Temperature Period: 20180801-20181201 Statistics at 00 UTC Used {00} + 24 48

Dewpoint Temperature

Upper Air: Standard Deviation & BIAS

Relative Humidity

7 stations Selection: ALL Relative Humidity Period: 20180801-20181201 Statistics at 00 UTC Used {00} + 24 48

3DVar Roadmap

 \succ Selection of conventional observation parameters.

Monitoring each observation's contribution on assimilation system.

Satellite data thinning factor

➢ 3DVar system tuning

Istanbul Hail Storm

Istanbul Hail Storm

- On July 27th 2017, between 15.15-15.45 GMT, Istanbul
- Summer storm with heavy rain, strong winds and golf ball size hail.
- Caused widespread damage on vehicles and injured at least 10 people. Also several airplanes landing at Istanbul Atatürk Airport were damaged by the hailstorm.

Observation

Kadıköy Rıhtım Obs.

27.7.2017 15:20 GMT

27.7.2017 15:15 GMT Radar

Total Precipitation

WRF

ALARO

ALR 3DVar, Only Conv.

ALR + 3DVAR (Conv. + 35 km Seviri)

Results

➢It was observed that both operational models (Alaro-1,Wrf, Arome, ECMWF Hres) expected rain after 16.00GMT over Istanbul.

Alaro-1 with 3D-Var DA in test mode with different inputs such as only conv. obs., -and conv+Seviri 35km thinning. ALR+3DVar model outputs produced more realistic precipitation amounts and areal coverage for this case.

Although Arome forecasts significant rain after 16.00 GMT, it didn't forecast hail over Istanbul.

3DVar Roadmap

 \succ Selection of conventional observation parameters

Monitoring each observation's contribution on assimilation system

Satellite data thinning factor

➢ 3DVar system tuning