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Which downdraught
Knupp & Cotton 1985:

e Penetrative downdraught (non precipitating convection,
width <1km, depth ~ 500m to 5km, w~ 1-15 m/s)

e Cloud-edge downdraught
(width < 5km, depth ~ 1-5 km, w<5m/s)

e Overshooting downdraught
(cloud top, width ~ 500m to 5km, depth ~ 1 to 3km, w ~ 1-40 m/s))

Precipitation-driven downdraught
(Low level, width ~ 1 to 10 km, depth ~ 1-5 km , w<15 to 20 m/s).
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Subsaturation

Air parcel in precipitation: Evaporation of condensate
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Subsaturation

Air parcel in precipitation: Evaporation of condensate

Evaporative cooling

® increases wy

Transport Evaporative e reduced by wy >

cooling

Adiabatic heating rate

Parcel goes ® e increased by wg >
away e reduces wy

® INCreases (st

The downdraught buoyancy results from a balance between
evaporative cooling limited by wy and adiabatic heating increased by wy.
Saturation requires the parcel to move very slowly (wg ~ 0).
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Precipitation-driven downdraught parametrization

Betts and Silva Dias 1979
g follows a path of constant 6. while remaining unsaturated.

d9da  Quw —qd . 9e — 4d Wd
S = + ) He
dp HE £e f(P)

Water transfer: parameters derived from Marshall-Palmer's distribution (Kessler 1969)
+ fitting a curve :

F(P)=kpPP",  kp=gddfp[l] =4.398 1072,  B; = gddfp[2] = 0.75
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Precipitation-driven downdraught parametrization

Betts and Silva Dias 1979
g follows a path of constant 6. while remaining unsaturated.

%ZQw_Qd_FqG_Qd’ P
dp HE £e

Water transfer: parameters derived from Marshall-Palmer's distribution (Kessler 1969)
+ fitting a curve :

F(P)=kpP,  kp=gddfp[l] =4.398-107%, By = gddfp[2] = 0.75

Mixing with environment

1 1 dMy
,Ce Md dp e

d¢

e Ag = tentrd + tddfr in w equation
P
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Precipitation-driven downdraught parametrization

Betts and Silva Dias 1979
g follows a path of constant 6. while remaining unsaturated.

%ZQw_Qd+QG_Qd Wq
dp HE ,Ce ’ JT"(P)

Water transfer: parameters derived from Marshall-Palmer's distribution (Kessler 1969)
+ fitting a curve :

F(P)=kpP,  kp=gddfp[l] =4.398-107%, By = gddfp[2] = 0.75

Mixing with environment

11 dMy dé

il — N\
ddp7

3 = ﬁdd—p ) Ag = tentrd + tddfr in w equation

qaq, 1T directly affected by wy:
vertical motion equation must be solved at the same time as downdraught profile.
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Descent computation

e start at level of minimum 6. close to 650hPa ( Sud and Walker 1993).
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Descent computation

e start at level of minimum 6. close to 650hPa ( Sud and Walker 1993).

e Saturated entraining moist adiabat: mixed v, — 1,

— — 1—1,51—1 _
T = gl T T - T
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Descent computation

e start at level of minimum 6. close to 650hPa ( Sud and Walker 1993).

e Saturated entraining moist adiabat: mixed v, — 1,
Lt = T T

e parallel computation of

mwg+n T a wg+ b
cwg+1’ 47 oo+ 1

alg’ + g + yDg+6 =0, ¢4 =
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Descent computation

e start at level of minimum 6. close to 650hPa ( Sud and Walker 1993).

e Saturated entraining moist adiabat: mixed v, — 1,
Lt = T T

e parallel computation of

__3 __9 _ mwg+n a’ wg+b
awyg” + Pwyg” +ywg+ 0 =0, QZ:C,@+1> Tcli:c/@+1
e Control arrival level:
- not saturated
- remaining precipitation -1 _ 9w —49d \, -1
- kwg>1.FEF — 12 e
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Closure: mesh fraction

Sud & Walker 1993: allocate 1/3 of total rain evaporation to downdraught cores:
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Closure: mesh fraction

Sud & Walker 1993: allocate 1/3 of total rain evaporation to downdraught cores:

e rain evaporation efficiency n depends on mean mass M, Ny (number), residence time
At = Az /w;

e M related to precipitation rate R;(Ng, M, z) = ]jcid (Kessler),
I; = rain intensity distribution function under a convective cloud cover f,,
R = average convective rainfall in the grid cell.
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Closure: mesh fraction

Sud & Walker 1993: allocate 1/3 of total rain evaporation to downdraught cores:

e rain evaporation efficiency n depends on mean mass M, Ny (number), residence time
At = Az /w;

e M related to precipitation rate R;(Ng, M, z) = ]jcid (Kessler),
I; = rain intensity distribution function under a convective cloud cover f,,
R = average convective rainfall in the grid cell.

a; | 0.52 1 0.34 | 0.09 | 0.04 | 0.01
14 0 0.40 | 26 | 11.25 | 18

%o 0 23.6 | 234 | 45 18 (Ruprecht & Gray 1976)
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Closure: mesh fraction

Sud & Walker 1993: allocate 1/3 of total rain evaporation to downdraught cores:

e rain evaporation efficiency n depends on mean mass M, Ny (number), residence time
At = Az /w;

e M related to precipitation rate R;(Ng, M, z) = ]jcid (Kessler),
I; = rain intensity distribution function under a convective cloud cover f,,
R = average convective rainfall in the grid cell.

Simplified approach: assume that

a;, | 0.52 1 0.34 | 0.09 | 0.04 | 0.01
14 0 040 | 26 | 11.25 | 18
70 0 236|234 45 18 (Ruprecht & Gray 1976)

downdraught covers GDDFRAC = 1/3 of precipitating area: o4 = %07:
with op estimated from the maximum of cloud fraction along the vertical.
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Closure: mesh fraction

Sud & Walker 1993: allocate 1/3 of total rain evaporation to downdraught cores:

e rain evaporation efficiency n depends on mean mass M, Ny (number), residence time
At = Az /w;

e M related to precipitation rate R;(Ng, M, z) = ]jcid (Kessler),
I; = rain intensity distribution function under a convective cloud cover f,,
R = average convective rainfall in the grid cell.

Simplified approach: assume that

a;, | 0.52 1 0.34 | 0.09 | 0.04 | 0.01
14 0 040 | 26 | 11.25 | 18
70 0 236|234 45 18 (Ruprecht & Gray 1976)

downdraught covers GDDFRAC = 1/3 of precipitating area: o4 = %07:
with op estimated from the maximum of cloud fraction along the vertical.

maybe op presently quite crudely estimated
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High resolution: LCSD=T

e Environment vertical velocity does matter: geometrical w,. # 0, i.e.

— we < 0: resolved part of the updraughts in the grid box
— we > 0: resolved downdraught: then o4 no longer limited to %

e Representation of a complement to the resolved part of the downdraught;
e Separation of organized entrainment vs turbulent mixing;

e Accounting for mesh fraction on the estimation of downdraught vs environment
properties.

® parameters:

— gddalbu=0.9 buoyancy coefficient csd motion equation (instead of tddbu~0.5);
— gddendymx=10"* limitation of organized entrainment.
— tentrd represents only turbulent entrainment.
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Other tunings

e braking towards the surface:
gdddp
(pf _ pl)gddbeta’
now (gddbeta, gdddp) = (3, 8-107) instead of (2, 10%) in acmodo.
e Fixing some other aspects: neq, wrongly interpreted the stratiform fraction in Alaro-0
— could require a re-tuning of updraught / microphysics.
Y
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Main scores

e Scores are sometimes neutral, sometimes it appears that a new fix in n., and some
other aspects may require a wider re-tuning of both microphysics and updraught.
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A first tuning of the unsaturated
downdraught main parameters, with
LCSD=T: GDDDP, TENTRD, TDDFR.
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Travel pictures
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