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Which downdraught

Knupp & Cotton 1985:

• Penetrative downdraught (non precipitating convection,
width <1km, depth ∼ 500m to 5km, w∼ 1-15 m/s)

• Cloud-edge downdraught
(width < 5km, depth ∼ 1-5 km, w<5m/s)

• Overshooting downdraught
(cloud top, width ∼ 500m to 5km, depth ∼ 1 to 3km, w ∼ 1-40 m/s))

• Precipitation-driven downdraught
(Low level, width ∼ 1 to 10 km, depth ∼ 1-5 km , w<15 to 20 m/s).
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Subsaturation

Air parcel in precipitation: Evaporation of condensate
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The downdraught buoyancy results from a balance between
evaporative cooling limited by ωd and adiabatic heating increased by ωd.
Saturation requires the parcel to move very slowly (ωd ∼ 0).
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Precipitation-driven downdraught parametrization

Betts and Silva Dias 1979
ψd follows a path of constant θe while remaining unsaturated.

dqd
dp

=
qw − qd

ΠE
+
qe − qd
Le

, Πe =
ωd
F(P)

Water transfer: parameters derived from Marshall-Palmer’s distribution (Kessler 1969)
+ fitting a curve :

F(P) = kFPβF , kF = gddfp[1] = 4.398 · 10−2, βf = gddfp[2] = 0.75

L. Gerard, Alaro-1 Working days, Vienna, 13 May 2014



Precipitation-driven downdraught parametrization

Betts and Silva Dias 1979
ψd follows a path of constant θe while remaining unsaturated.

dqd
dp

=
qw − qd

ΠE
+
qe − qd
Le

, Πe =
ωd
F(P)

Water transfer: parameters derived from Marshall-Palmer’s distribution (Kessler 1969)
+ fitting a curve :

F(P) = kFPβF , kF = gddfp[1] = 4.398 · 10−2, βf = gddfp[2] = 0.75

Mixing with environment

1

Le
=

1

Md

dMd

dp

∣∣∣
e

= λd
dφ

dp
, λd = tentrd + tddfr in ω equation

L. Gerard, Alaro-1 Working days, Vienna, 13 May 2014



Precipitation-driven downdraught parametrization

Betts and Silva Dias 1979
ψd follows a path of constant θe while remaining unsaturated.

dqd
dp

=
qw − qd

ΠE
+
qe − qd
Le

, Πe =
ωd
F(P)

Water transfer: parameters derived from Marshall-Palmer’s distribution (Kessler 1969)
+ fitting a curve :

F(P) = kFPβF , kF = gddfp[1] = 4.398 · 10−2, βf = gddfp[2] = 0.75

Mixing with environment

1

Le
=

1

Md

dMd

dp

∣∣∣
e

= λd
dφ

dp
, λd = tentrd + tddfr in ω equation

qd, Td directly affected by ωd:
vertical motion equation must be solved at the same time as downdraught profile.
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Descent computation

• start at level of minimum θe close to 650hPa ( Sud and Walker 1993).
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• Control arrival level:
- not saturated

- remaining precipitation

- kω̃d > 1.E − 12
δql−1ev =

qw − qd
Πe

4pl−1
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Closure: mesh fraction

Süd & Walker 1993: allocate 1/3 of total rain evaporation to downdraught cores:
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Simplified approach: assume that
downdraught covers GDDFRAC ≈ 1/3 of precipitating area: σd = 1

3σP
with σP estimated from the maximum of cloud fraction along the vertical.

. maybe σP presently quite crudely estimated
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High resolution: LCSD=T

• Environment vertical velocity does matter: geometrical ωe 6= 0, i.e.

– ωe < 0: resolved part of the updraughts in the grid box
– ωe > 0: resolved downdraught: then σd no longer limited to 1

3.

• Representation of a complement to the resolved part of the downdraught;

• Separation of organized entrainment vs turbulent mixing;

• Accounting for mesh fraction on the estimation of downdraught vs environment
properties.

• parameters:

– gddalbu=0.9 buoyancy coefficient csd motion equation (instead of tddbu∼0.5);
– gddendymx=10−4 limitation of organized entrainment.
– tentrd represents only turbulent entrainment.
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Other tunings

• braking towards the surface:
gdddp

(pL − pl)gddbeta
,

now (gddbeta, gdddp) = (3, 8 · 107) instead of (2, 104) in acmodo.

• Fixing some other aspects: neq, wrongly interpreted the stratiform fraction in Alaro-0
– could require a re-tuning of updraught / microphysics.
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1-D model profiles
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Main scores

• Scores are sometimes neutral, sometimes it appears that a new fix in neq and some
other aspects may require a wider re-tuning of both microphysics and updraught.

A first tuning of the unsaturated
downdraught main parameters, with
lcsd=T: gdddp, tentrd, tddfr.
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