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Content of the present talk

� About the acronym and the sequence of talks

� A crash course on QNSE

� Brief digression on ‘anisotropy’

� Some considerations for the link (& separation) 
between turbulent and diffusive computations

� Is there something like a ‘critical Ri’?

� How many additional prognostic equations for 
the turbulent scheme?

� General issues concerning ‘non locality’

� The special case of TOUCANS Third Order 
Moments (TOMs) => preliminary choices



The acronym (this morning’s talk)

Third

Order moments

Unified

Condensation

Accounting and

N-dependent

Solver (for turbulence and diffusion)

TOM’s inclusion

Link Turb. � Diff.

Prognostic equations



The acronym (this afternoon’s talk)

Third

Order moments

Unified

Condensation

Accounting and

N-dependent

Solver (for turbulence and diffusion)



The acronym (to-morrow’s
talk)

Third

Order moments

Unified

Condensation

Accounting and

N-dependent

Solver (for turbulence and diffusion)



The Reynolds formalism and its closure 
problem (1/3)

• Let us start with a simple vertical advection equation

• Introducing the fluctuations of the variables via

• We may then develop, average, slightly simplify and introduce 

density effects
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The Reynolds formalism and its closure 
problem (2/3)

• So the evolution of any conservative prognostic variable 
requires (in first approximation) the knowledge of the 
statistical correlation of its fluctuations with those of the 
vertical velocity (for 1D turbulence).

• One may try and diagnose those first order correlations 
(lower order closure) but one may also write prognostic 
equations for them.

• The problem is that these equations for the second order 
statistical moments will automatically generate third order 
moment terms, and so-on.

• Furthermore, at every step in this process the number of 
equations and of higher order moment terms dramatically 
increases. So we need a closure to stop this proliferation.



The Reynolds formalism and its closure 
problem (3/3)

• Most full turbulent systems relate the fourth order moments to the 
lower ones with stationarised equations.

• This closes the system but the outcome remains awfully 
complicated.

• There is now an avenue of research pushing the same step one level 
downwards => hope of some rather simplified specification on third 
order moments for the equations of the second order moments.

• The system can even be further simplified if one selects only two 
second order moments for scrutiny, i.e. the turbulent kinetic energy 
(TKE) and the potential equivalent (TPE). One may also consider 
the sum of them (total turbulent energy) TTE=TKE+TPE

• The issue is open whether or not something beyond TKE should be 
treated prognostically (while TKE should be if we want to escape 
the purely diagnostic closure).



The QNSE new alternative (first paper, 
Sukoriansky, Galperin and Staroselsky, 2005)

• QNSE (Quasi-Normal Scale Elimination) does not follow the path 
of Reynolds. It rather considers the turbulence problem from a 
spectral point of view, thus putting ‘waves’ in the heart of the
mathematical derivation.

• The results are directly obtained in terms of horizontal length scales. 
It then requires a ‘filtering stationarity equation’ (not used further) 
to put them in terms of Richardson numbers (for RANS-type 
applications).

• This has three consequences:

– Total separation of the stability dependency functions between momentum 
and heat (=> impossibility to ‘isolate’ the anisotropy part in the latter);

– No ‘critical Ri’ exists when going to very stable regimes;

– QNSE does not apply to the unstable regimes (or at least to the strongly 
unstable ones). 

• The ensuing 6 viewgraphs (courtesy of Boris Galperin) give a 
flavour of all this.















Brief digression on ‘anisotropy’ (1/2)

� As shown above, anisotropy is an observed property 
of the flow. Full isotropy of turbulence is only 
obtained in the ‘free convective limit’. With increasing 
stability, the variance of ‘w’ logically diminishes with 
respect to those of ‘u’ & ‘v’.

� This behaviour is a key element to understand why 
there is no critical Ri number at very high stability 
(see later).

The anisotropy of turbulent flows 

should not be neglected

Unstable case 

asymptote



Brief digression on ‘anisotropy’ (2/2)

� And yet:

− Some schemes, like CBR, neglect the effect of anisotropy;

− Complex schemes that fully take it into account do not 
necessary lead to a solution without critical Richardson 
number.

� Generally speaking, in the (CBR- and p-TKE-like) 
framework of one turbulent prognostic quantity (TKE):

− The stability dependency function for momentum depends 
only on the anisotropy handling;

− The stability dependency function for heat merges the 
effect of anisotropy with a ‘substitute’ term acting instead 
of the (eliminated) prognostic equation for TPE.

� In QNSE (where anisotropy is at the heart of the 
spectral treatment), the said ‘merge’ cannot be 
inverted. 



A few anticipations on the role of QNSE 
vs. p-TKE in TOUCANS (1/2)

� Something which attracted our attention rather early was that 
the behaviour for Ri=>+∞∞∞∞ obtained by QNSE (non-zero 
momentum exchange, no critical Ri but an asymptotic value 
for the Richardson flux number Rif=Ri.(Kh/Km)) was common 
with:

− The version of CBR (RMC01) using a similar kind of ‘filter’ than 
QNSE (but neither with the other ‘original’ CBR version, nor with the 
generic Mellor-Yamada-type RANS model with all degrees of 
freedom, filtered or not);

− And (more surprisingly) the Louis scheme, in its versions since 
CYCORA-bis (2000), and hence with p-TKE of course!

� This led to the fruitful idea that there could exist a way to 
symmetrise things:

− Using the QNSE example to make ‘separation’ a goal for RANS 
results, this having of course to be justified on independent grounds;

− Using the RANS formalism to ‘extend’ the QNSE results to the 
unstable range of negative Ri values.



A few anticipations on the role of QNSE 
vs. p-TKE in TOUCANS (2/2)

� For reasons too complex to be developed here, it appeared 
that this symmetrisation was indeed possible, partly thanks 
to the p-TKE architecture linking ‘Louis’ and ‘CBR’ concepts 
in a kind of ‘anticipation’.

� Furthermore, unlike for QNSE, in the ‘modified RANS’ case, 
the separation of the momentum and heat stability 
dependency functions does not imply loosing track of the 
‘anisotropy’ contribution within the latter.

� This issue could not have been explored with CBR, since the 
latter scheme ignores the anisotropy effect.

� All this helped to understand ‘a posteriori’ why we have been 
very lucky with p-TKE:

− It is wrong in some core hypotheses, but

− It nevertheless has all the correct asymptotic functional 
dependencies!



Generalities concerning the ‘turbulence 
���� diffusion’ link (1/3)

� In the ‘prognostic’ framework, which we are here interested 
in, and forgetting for a while the phase changes’ effects, 
things appear simple at first sight:

− ‘turbulence’ solves the equations for the additional prognostic 
variables (TKE, TPE, fluxes, …) and may deliver ‘classical’ 
exchange coefficients for the computation of diffusive fluxes;

− ‘diffusion’ happens in a rather unchanged manner with respect to
the ‘diagnostic’ case; it may just provide back some input to the 
ensuing ‘turbulent’ step.

� As a parenthesis, one should realise that this simple duality 
can exist because heat and moisture transport may be 
assumed homothetic. In the oceanic science they indeed 
have no clouds to consider (lucky), but the difference in 
diffusivity of heat and salinity forces them to use so-called 
two-points closure methods (unlucky). And vice-versa for us.



Generalities concerning the ‘turbulence 
���� diffusion’ link (2/3)

� But the above idealistic vision forgets a few issues:

− Separating diffusion from turbulence (which we must do if we want 
to easily treat implicitly the phase changes’ effect) means that only 
TKE and TPE may be handled as prognostic (fluxes cannot be 
computed twice);

− Accounting for non-locality then requires some careful thinking (it 
must be a diagnostic computation somehow sandwiched between 
two prognostic ones [respectively for TKE(TPE) and for u, v, qt & 
sL]);

− All this (as well as the above-mentioned return from the output of 
diffusive calculations) raises the issue of the order of the 
computations and of the measures taken to ensure their linear and 
non-linear stability.

� On top of that, phase changes intervene (at least) twice in 
the process: (i) in changing the resistance to buoyancy and 
hence the stability dependency laws & (ii) in controlling the 
way to return from qt & sL to qv, ql, qi & s, for fluxes.



Generalities concerning the ‘turbulence 
���� diffusion’ link (3/3)

� Except for the rather trivial ‘clear’ and ‘completely covered’ 
cases, both treatments of the phase changes’ effects should 
rather be as consistent as possible (full consistency is 
probably impossible).

� The ‘classical’ solution to this problem (since Sommeria and 
Deardorff) is to link both:

− The statistical assumptions made for obtaining a sug-grid 
thermodynamic adjustment between water vapour, condensates 
and temperature with the Reynolds-type computations of the 
turbulence;

− The ‘area fraction’ obtained as a by-product of the adjustment with 
the ‘return’ computation for the fluxes.

� In the TOUCANS’ thinking we rather try to rely on a unique 
‘bridge’, encompassed in the ‘Shallow Convective 
Cloudiness’ (SCC). 



Precisions about the role of SCC

� One may postulate that the problem of the ‘classical’ solution 
for the diffusive transport of condensate lies in the staggering
(the ‘adjustment information’ being on full-levels vs. the split 
of the total moisture fluxes being done on half-levels).

� The alternative solution of separate transport computations 
appears noise-prone (discontinuous fields).

� Having SCC (i) in order to compute moist stability 
dependencies in the turbulence & (ii) in order to decide the 
above mentioned ‘split’ seems an attractive solution.

� It also offers the chance of a complete and logical input to 
radiative cloudiness, even if the staggering problem is 
displaced there.

� If SCC=>0, no problem. If SCC=>1, the turbulence 
computation becomes ‘very stable’, diffusive transport nearly 
vanishes and hence the ‘full re-projection’ of total moisture 
diffusive transport acts on quite small fluxes, as should be. 



TOUCAN’s basic choices
� Solving for turbulence before computing exchange coefficients and 

TOM’s related quantities for diffusion (p-TKE inheritance); possible a-
posteriori correction of E+.

� One single turbulent additional prognostic variable, TKE. 

� ‘Filtering’ use of the stationarity equation.

� Accounting for anisotropy.

� Intentional separation of the stability dependencies for momentum on 
the one side and for heat/moisture on the other side.

� Merging the RANS and QNSE formalisms => ‘no critical Richardson 
number’ solution / 3 parameter & 3 equation system.

� Introducing TOMs effects in a way conceptually as close as possible to 
a mass-flux parameterisation.

� Using the above-connected ‘dry’ results for moist turbulence just by 
redefining ‘N’, the so-called Brunt-Vaisala frequency.

� Handling the ‘moist’ link between turbulence and diffusion consistently 
with the above, around the SCC concept.



The “No Ri(cr)” issue, facts

The blue double arrow in the bottom part of the diagram 
indicates where previous theories did put the ‘critical Ri’! 
Even if the academic question about the occurrence of 
infinite Ri values may be debated, it is sure that the 
hypotheses leading to critical Ri thresholds around [0.25-1.] 
must be considered as false in view of the accumulated 
observational evidence.

At very high stability there appears to be no 

limitation on the Richardson-number (but there 

exist a critical flux-Richardson-number Rifc ). 

There are in fact two stable regimes, one with a 

constant ratio of the exchange coefficients 

(strong mixing), one with this ratio inversely 

proportional to Ri (weak mixing).



The “No Ri(cr)” issue, 
interpretation

� There are several ways to interpret this radical change in the 
‘constraints’ which the result of any turbulence theory must obey. The 
most simple and convincing at the same time is probably the one given 
by Zilitinkevitch et al. (QJRMS, 2008).

� One should depart from the analysis of the sole budget equation for 
TKE and also look at the same budget for TPE. The buoyancy term of 
the former has an opposite equivalent in the latter (pure conversion of 
energy). So, apart from advective-diffusive redistribution terms, the 
TTE=TKE+TPE always has a shear source term, balanced on average 
by total dissipation. Hence turbulence can never disappear, QED.

� In practice it works as follows. Suppose that, for quasi-infinite stability, 
the buoyancy term become so strongly negative that TKE considerably 
decreases. The TPE increases in the same amount and fluctuations of 
buoyancy are strengthened. Fluid elements thus acquire stronger 
accelerations and some TKE is recreated (mostly horizontally). When it 
is becoming too big, the above-described ‘cycle’ will restart.

� This explains why the asymptotic ratio Km/Kh must be proportional to 
Ri. Any other power law enters in contradiction with “0 < TPE/TTE < 1”!



Still avoiding the additional prognostic 
equation for TPE

� One (rather alibistic) reason to do so is that QNSE is 
incompatible with it. The ‘conversion’ term effects are de 
facto incorporated into the stability dependency function for 
heat (remember that the ‘cyclic’ process previously described 
is surely associated with some anisotropic waves).

� More purposefully, if the prognostic TPE equation 
disappears, it just means that its redistribution terms are 
cancelled. Doing the same on the TKE side in order to get a 
‘filtering condition’ (leading to expressions for Km and Kh in 
Ri=N²/S² rather than in N and S) restores the lost balance. 
The ‘filtering condition’ [introduced for CBR by Redelsperger
et al. (BLM, 2001)] is just the expression of the conservation 
of TTE in a differing context. It is hence automatically 
compatible with ‘No Ri(cr)’ solutions.

� The spectacular demonstration of how one part of the 
stability dependency function for heat acts as a substitute for 
the removed prognostic TPE equation is given in the 
Appendix of Cheng et al. (JAS, 2002), a worth reading paper. 



Graphical representation of the previously
expressed ideas

Conversion term

Elimination 

‘Filter’
N

Ri

S



Synthesis: simplifying the RANS models to a 
tractable set of equations for turbulence

� The next two viewgraphs show a spectacular reduction of 
complexity for Reynolds stress modelling equations, 
obtained owing to the above-mentioned steps (including the 
filtering role of the TKE stationarity equation).

� The advantages are multiple:

− The stability dependency functions can be inverted => possibility to 
‘parameterise’ shallow convection via a single modification of the 
Brunt-Vaisala frequency;

− The inclusion of Third Order Moment (TOMs) terms can be
performed at relative little computing expense;

− The QNSE spectral theory can be well approximated within this new 
framework. This allows to extend its scope to the unstable range 
and to make it benefit from the advances mentioned in both
previous bullets.



Original equations (Cheng et al.)



Resulting set of phenomenological equations
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Non-locality, generalities

� It has long been recognised (via comparisons with Reynolds 
stress models using a higher order closure) that the pure 
down-gradient terms cannot fully reproduce the complex
solutions observed in the PBL.

� Historically, the incorporation of non-locality has 
progressively gone from the fully heuristic to the NWP-
compatible:

− Modification of the θθθθ gradients by a constant ‘counter gradient 
correction’ (in order to get upward fluxes even in slightly stable 
cases, like below inversions);

− Addition of empirical but time- and space-variable corrections;

− Higher order closure models recast in terms of standard vertical 
profiles of corrections;

− The recent ‘compact’ work of Canuto et al., which will be the basis 
for the solution proposed in TOUCANS.



Also in the domain of higher order moments, one is
indeed looking for some reduction of complexity



Proof with fit to aircraft data (dots) and to 
LES computations (dashed lines)

The quality with three terms is nearly as good as with fourteen
ones (and this number 14 was already obtained thanks to a 
simplification in the jump from 4th order to 3rd order moments)!

Canuto et al. (Ocean Modelling, 2007)



Resulting set of ‘corrective equations’

( ) ( ) [ ]0

1

*0

1

*

1

*

1

*

1 )()( h
h

Qhhh J
p

with
p

J
QK

z
KJ τφρ

θ
ρ θ ∂

∂
Τ−Τ=Τ

∂

∂
Τ+

∂

∂
=

−−−−−

( )

e

gg

c

cC

QL
pR

R

cc

QL

pe

g

c

C

g

Q

if

i

K

Q
g

2

11

*

2

3

22

2

0
0

1

*

4
)(

)(
)1(125

6)(

5

6
)(







=Τ















∂

∂














−
−














∂

∂
=Τ

−

−

τ
θ

φρ
τχτ

ϕ
ρ

θ

ε
θ

εε










∂

∂
Τ

∂

∂
+






∂

∂

∂

∂
−=

∂

∂ −−

t
QK

pz
K

p
g

t
Qhh

θ
φρ

θ
ρ

θ 1

*

1)(

[ ])()()( *1

*

1

0

−−− −Τ
∂

∂
= θθφρ Qhcg QK

p
S ))(( 0hh Jgetto

z
K

p
g

t
solvingwhen 






∂

∂

∂

∂
−=

∂

∂ θ
ρ

θ

[ ] 0

1

*

1 )()(
)(

cgQhh SQK
pz

K
p

tg +Τ
∂

∂
+









∂

∂

∂

∂
−= +−−

+
+ δθφρ

δθ
ρδδθ



Last remarks on the TOMs’ terms handling

• A similar set of corrective equations can be derived for 
moisture (but not for momentum).

• Looking at the core equation

one sees that the second term on the right hand side is of 
the mass-flux type. Simply, in the spirit of the ‘counter
gradient’ denomination, the sign of the mass-flux cannot be
anticipated.

• This creates a discretisation problem, but not a physical
one, on the contrary: the ‘convergence’ of the corrections 
to fluxes due to TOM’s terms is part of the description of 
what happens near inversions.
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Outlook
� Although not all details were treated, it is hoped that you got 

a good flavour of the TOUCANS’ spirit and architecture.

� The presentation of those as a logical construction is a pure 
‘hindcast’ setting. In reality: 

− We first wanted to emulate f-TKE with the p-TKE solver;

− Then came the inclusion of the QNSE problematic, with the aim of
symmetrising the situation with RANS computations;

− Losing a bit of faith in ‘3MT for everything’, we got interested in the 
TOMs’ inclusion as an alternative, also to ‘mixed’ schemes;

− Finally the moist turbulent problematic forced us to reconsider the 
role of SCC and the vertical staggering problem in the ‘turbulence 
� diffusion’ link.

� Ivan will give you some overview of the ‘new turbulence’ 
ensemble, plus some specific details, before I come back, 
also in some details, to a few aspects of the above.


