Zentralanstalt für Meteorologie und Geodynamik 柳

Documentation on: Condensation sources and sedimentation

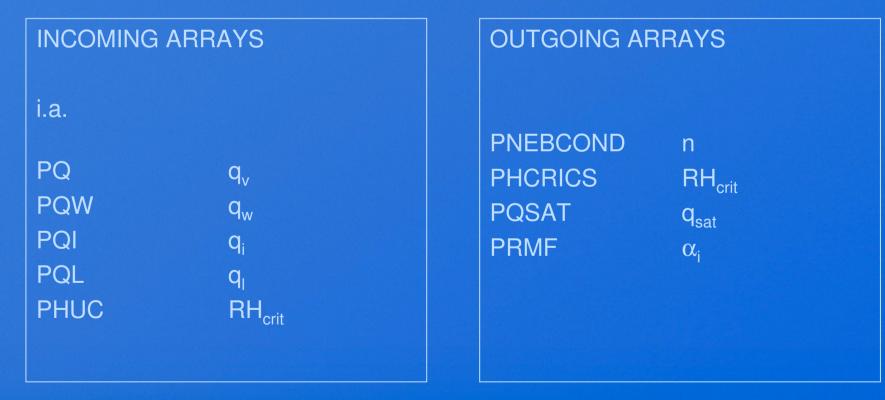
Christoph Wittmann

Overview

ALARO-TRAINING 26.-30.3

- ACNEBCOND: computation of cloudiness and critical relative humidity for the resolved condensation processes
- ACCDEV: computation of stratiform condensation/ evaporation fluxes
- APLMPHYS: computation of precipitation fluxes and linked pseudo-fluxes (autoconversion, evaporation/melting, condensation)

CALL SEQUENCE


ALARO-TRAINING 26.-30.3

ACNEBCOND I

ALARO-TRAINING 26.-30.3

computation of cloudiness and critical relative humidity for the resolved condensation processes

used modules: YOMPHY, YOMPHY0, YOMPHY2, YOMCST

ACNEBCOND II

ALARO-TRAINING 26.-30.3

I. Preliminary computation of ice fraction α_i (PRMF), FONICE

$$\alpha_i = \begin{cases} 1 - \exp\left\{-\left(\frac{T - T_f}{2\Delta T}\right)^2\right\} & \text{for } T < T_f \\ 0 & \text{for } T \ge T_f \end{cases}$$

II. Critical relative humidity RH_{crit} (PHCRICS)

LXRCDEV=.TRUE.

LSMGCDEV=.TRUE.

ACPLUIE_PROG formula:

Modification of PHUC according to model-mesh size using characteristic space scales for ice and liquid water Formula after Lopez: PHCRICS=f (RH_{Cmax}, RH_{Cmin}, PVETAF)

Zentralanstalt für Meteorologie und Geodynamik

ACNEBCOND III

ALARO-TRAINING 26.-30.3

modified Xu-Randall scheme

Smith-Gerard scheme

LXRCDEV=.TRUE.

ALARO-TRAINING 26.-30.3

Xu-Randall typed relation

$$n = \left(\frac{q_v}{q_w}\right)^r \frac{\alpha q_c}{\alpha q_c + (q_w - q_v)^{\delta}}, \quad \text{,fullfilling} \quad q_v = q_w (RH_c(1-n) + n) \quad \text{and} \quad q_c = q_t - q_v,$$

function x(s):

$$x_{ref} = x(s) = \underbrace{d_c}_{\text{ZDC}} \underbrace{(1 - \frac{1}{s})}_{\text{ZFAC}} \underbrace{\left(1 + \frac{A}{\frac{d_c s^{\delta}}{2\text{FAC}}} \underbrace{\frac{\text{ZDNII}}{1}}_{\text{ZFAC}} \right)}_{\text{ZNPI}} - (1 - \frac{1}{s}) \quad \text{for} \quad x_{ref} = \frac{q_t}{q_w} - RH_c.$$

The root of x(s) is found in a Newton-loop with 3 iterations (ITER) with control variable s (ZSITER):

$$\overbrace{s^{n+1}}^{\text{ZSITER}} = \overbrace{s^n}^{\text{ZSITER}} + \frac{1}{2} \left(\underbrace{\frac{x_{ref}}{x_{ref}} - x(s^n)}_{\underbrace{\frac{\partial x(s^n)}{\partial s}}} \right)^2 \frac{1}{s^n} - \underbrace{\frac{1}{s^n}}_{\text{ZDXN}}$$

$$n = 1 - \frac{1}{\mathsf{ZSITER}}$$
 and $q_{sat} = q_w$

Zentralanstalt für Meteorologie und Geodynamik

LSMGCDEV=.TRUE.

ALARO-TRAINING 26.-30.3

- PQSATS (using thermodynamical functions FOEW, FOQS)
- NSMTBOT=0: recompute PRMF for lowest level (JLEV=KLEV) by using average of T and surface temperature Ts as input for FONICE
- LSMTPS=.TRUE. : smoothing of PQSATS for layers containing liquid condensate and in the case of dry adiabatic unstable profile; NSMTPB and NSMTPA defining numbers of levels below/above actual level
- PNEBCOND:

$$n = 1 - \frac{1}{2} \left(1 + \frac{\frac{q_t}{q_{sat}} - 1}{1 - RH_c} \right)^2 \quad \text{for} \quad q_t \ge q_{sat}$$
$$n = \frac{1}{2} \left(1 - \frac{\frac{q_t}{q_{sat}} - 1}{1 - RH_c} \right)^2 \quad \text{for} \quad q_t < q_{sat}$$

- Smoothing of cloud-cover profile:
 - NSMDNEB=1: averaging of cloud cover n via (central weighted) running mean
 - NSMDNEB=2: allow maximum gradient of cloud cover between two levels

ACCDEV I

ALARO-TRAINING 26.-30.3

Computation of resolved condensation flux (and/or precipitation fluxes + pseudo-fluxes)

INCOMING ARRAYS		OUTGOING ARRAYS	
i.a.			
PQ	q _v	PFCSQL	P _{lc}
PQW	q _w	PFCSQN	P _{sc}
PQI	q _i	PFPLSL	P_1
PQL	q	PFPLSN	P_s^{\prime}
PHCRICS	RH _{crit}	PFASL	P _{la}
PNEBCOND	n	PFASN	P _{sa}
PQSATS	q _{sat}	PFESL	P _{le}
PMRF	α_{i}	PFESN	P_{se}^{\sim}
PQN	q _s		
PQL	q _r		

used modules: YOMPHY, YOMPHY0, YOMPHY2, YOMCST

ACCDEV I

ALARO-TRAINING 26.-30.3

I. Initialzing condensation fluxes (minus evaporation) in highest level

II. Computation of latent heat with FOLH: L_v, L_s

Zentralanstalt für Meteorologie und Geodynamik

LXRCDEV=.TRUE.

ALARO-TRAINING 26.-30.3

$$P_{lc[jlev]} = P_{lc[jlev-1]} + \frac{\Delta p}{g\Delta t} \mathsf{ZCONL}$$

$$P_{sc[jlev]} = P_{sc[jlev-1]} + \frac{\Delta p}{g\Delta t} \mathsf{ZCONI}$$

ZCONLliquid condensation amountZCONIsolid condensation amount

 $q_t > q_v^*$: super-saturation

$$\mathsf{ZDQVN} = q_v - q_v^*$$

$$q_v^* = q_w \left(RH_c(1-n) + n \right)$$

 $q_t \ll q_v^*$: under-saturation

$$\begin{array}{rcl} \mathsf{ZCONL} &=& -q_l \\ \mathsf{ZCONI} &=& -q_i \end{array}$$

Zentralanstalt für Meteorologie und Geodynamik

LSMGCDEV=.TRUE.

ALARO-TRAINING 26.-30.3

$$P_{lc[jlev]} = P_{lc[jlev-1]} + \frac{\Delta p}{g\Delta t} \mathsf{ZDQL}$$

 $P_{sc[jlev]} = P_{sc[jlev-1]} + \frac{\Delta p}{g\Delta t} \mathsf{ZDQI}$

ZDQLliquid condensation amountZDQIsolid condensation amount

$$\mathsf{ZDQL} = q_l^* - q_l$$
 and $\mathsf{ZDQI} = q_i^* - q_i$

$$q_l^* = (1 - lpha_i)q_c$$
 and $q_i^* = q_c - q_l^*$

$$q_c = q_c \sigma_s$$

 σ_{s} standard deviation of distribution describing \textbf{q}_{c}

with $q_c = f$ (RH,RHc)

LSTRAPRO=.TRUE.

ALARO-TRAINING 26.-30.3

call of APLMPHYS inside ACCDEV (LSTRAPRO=.TRUE.)

need for updated q_l , q_s and q_v according to "actual" condensation/evaporation rates to pass them to APLMPHYS

- Precipitation fluxes are returned from APLMPHYS for LSTRAPRO=.TRUE.
- L3MT=.TRUE. : precipitation fluxes remain unaffected

APLMPHYS I

ALARO-TRAINING 26.-30.3

Computation of precipitation fluxes and connected pseudo-fluxes

INCOMING ARRAYS			
i.a.			
PQMP	q _v		
PQIMP	q _i		
PQLMP	q _l		
PQRMP	q _r		
PQNMP	q _s		
PHCRICS	RH _{crit}		
PNEBM	n		
PQSATS	q _{sat}		
PDQ	Δq		
PLHV	L _v		
PLHS	L _s		

OUTGOING AF	RRAYS
PFPLSL PFPLSN PFCSQL PFCSQN PFASL PFASN PFESL PFESN PFALLR	P _I P _s P _{lc} P _{sc} P _{la} P _{sa} P _{le} P _{se} ω _r
PFALLS	ω _r ω _s

used modules: YOMPHY, YOMPHY0, YOMPHY2, YOMCST

APLMPHYS II

ALARO-TRAINING 26.-30.3

I. Initialization of fluxes and pseudo fluxes at the top

II. Local copies for actual layer, temperature dependencies

III. Preparation for sedimentation (fall speed, PDFs,...)

IV. Autoconversion (ACACON)

V. Collection (ACCOLL), called 2 times

VI. Evaporation and melting (ACEVMEL), called 2 times

VII. Final computation of fluxes for actual layer

VIII. Prepare fluxes at the top of the next layer (LRNUMX)

Zentralanstalt für Meteorologie und Geodynamik 👔

Temperature dependencies

ALARO-TRAINING 26.-30.3

II. Local copies for actual layer, temperature dependencies

Temperature dependency of

- autoconversion process (time scale, critical thresholds)
- fall speed of snow (or fall speed ratio snow/rain)
- collection efficiencies

based on exponential function

 $\mathsf{ZEXPN} = \min\left(1, \exp(c_t(T - T_f))\right)$

With c_t being geometrical average of Lopez values (differing c_t's for different processes)

Preparation for sedimentation

ALARO-TRAINING 26.-30.3

III. Preparation for sedimentation (fall speed, PDFs,...)

Fall speed of liquid and solid species:

$$\omega_l = \Omega^r \left(\frac{P_l'}{\rho^4}\right)^{\frac{1}{6}} \quad \omega_s = \Omega^r \left(\frac{P_s'}{\rho^4}\right)^{\frac{1}{6}} \frac{1}{\mathsf{ZEVGSL}}$$

ZEVGSL: fall speed ratio snow/rain

Probabilities P (differing for liquid and solid species) to reach the bottom of actual layer during actual time step for:

- precipitating species already present in the layer : P1(Z)
- precipitating species falling from the layer above : P2(Z)
- Precipitating species produced locally (autoconv., ...) : P3(Z)

P1, P2, P3 refer on basic probability P0(Z) to reach the bottom of actual layer, with Z

$$Z_l = \max\left(\epsilon, \frac{\Delta p}{\rho g \Delta t} \frac{1}{\omega_l}\right)$$

Zentralanstalt für Meteorologie und Geodynamik 🥖

Autoconversion

ALARO-TRAINING 26.-30.3

IV. Autoconversion (ACACON)

CALL ACACON ---- conversion rates ZACORL, ZACONI, ZACONL

Update of precipitation fluxes (including graupel) using probabilities:

$$\begin{split} P_l &= P_{l[jlev-1]}P_2^l + \frac{\Delta p}{g\Delta t}(P_1^l q_r + P_3^l \mathsf{ZACORL}'), \\ P_n &= P_{n[jlev-1]}P_2^s + \frac{\Delta p}{g\Delta t}(P_1^s q_s + P_3^s \mathsf{ZACONI}'), \\ P_g &= P_{g[jlev-1]}P_2^l + \frac{\Delta p}{g\Delta t}(P_1^l q_s + P_3^l \mathsf{ZACONL}'). \end{split}$$

Collection processes

ALARO-TRAINING 26.-30.3

V. Collection (ACCOLL), called 2 times

Call of ACCOLL is done twice:

- 1. seeded part
- 2. non-seeded part

Combined collection rates: ZCOLNL, ZCOLNI, ZCOLRL, ZCOLRI

Update of precipitation fluxes (including graupel)

$$P_l = P_l + \frac{\Delta p}{g\Delta t} P_3^l (\text{ZCOLRL} + \text{ZCOLRI}),$$

$$P_{s} = P_{s} + \frac{\Delta p}{g\Delta t} P_{3}^{s} (\text{ZCOLNL} + \text{ZCOLNI}),$$

$$P_{g} = P_{g} + \frac{\Delta p}{g\Delta t} P_{3}^{l}(\text{ZZCOLN}),$$

Evaporation and Melting

ALARO-TRAINING 26.-30.3

VI. Evaporation and melting (ACEVMEL), called 2 times

Call of ACEVMEL is done twice

- for evaporation/sublimation of precipitation in the "clear sky part"
- for melting/freezing of precipitation species in the "cloudy part"

Resulting evaporation/melting increments: ZEVAR, ZEVAN, ZFONT Update of pecipitation fluxes:

$$\begin{split} P_l &= \max\left(0, P_l - \frac{\Delta p}{g\Delta t}P_3^l(\text{ZEVAR} - \text{ZFONT})\right), \\ P_s &= max\left(0, P_s - \frac{\Delta p}{g\Delta t}P_3^s(\text{ZEVAN} + \text{ZFONT})\right), \end{split}$$

Final computations

ALARO-TRAINING 26.-30.3

VII. Final computation of fluxes for actual layer

Final computations of fluxes (and pseudo-fluxes) for

- condensation: P_{lc} (PFCSQL) and P_{sc} (PFCSQN)
- autoconversion: P_{la} (PFASL) and P_{sa} (PFASN)
- evaporation: P_{le} (PFESL) and P_{se} (PFESN)
- precipitation: P_I (PFPLSL) and P_s (PFPLSN)
- graupel: P_g (ZFSGRPL)

Graupel-effect

ALARO-TRAINING 26.-30.3

- graupel flux exists just locally in the routine
- no direct effect on any prognostic quantitiy

Influence on:

- fall speed ratio snow/rain ZEVGSL (graupel is falling faster than snow)
- Collection efficiencies
- the sedimentation probabilities used for graupel are the ones for the liquid phase

Recomputation of fall speed

ALARO-TRAINING 26.-30.3

- Initial (precipitation dependent) fall speeds computed at the beginning of the sedimentation part are based on the precipitation fluxes from the layer above
 - recomputation of fall speeds (PFALLL, PFALLN) using actual fluxes (corrected according to autoconversion, ...) is done:

$$\omega_l = \Omega^r \left(\frac{P_l'}{\rho^4}\right)^{\frac{1}{6}} \qquad \qquad \omega_s = \Omega^r \left(\frac{P_s'}{\rho^4}\right)^{\frac{1}{6}} \frac{1}{\mathsf{ZEVGSL}}$$

Preparations for the next layer

ALARO-TRAINING 26.-30.3

VIII. Prepare fluxes at the top of the next layer (LRNUMX)

LRNUMX=.TRUE.:

Maximum overlap of adjacent Clouds and random positioning of cloudy air seperated by clear air

"Cloud" is devided into:

- seeded part
- non-seeded part
- clear air covered with precipitation

Computation of proportions (cloud/clear) and connected fluxes

LRNUMX=.FALSE. Random cloud overlap

 proportions and conected fluxes become equal