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Topics

1. Physical context

. Main choices :

Mass-flux schemes — Condensation / evaporation / ud detrainment — MT coupling

. The updraught
. Cloud profile

— Mixing — diagnostic — cloud en-
semble — prognostic

— Ascent — Condensates — detrai-
ned fraction

— Vertical prognostic equation

2. Closure and mesh fraction

3. Momentum handling

4. Outputs : fluxes — Other outputs

4. The downdraught
1. Principles — environment

2. Evaporating descent
Mixing — Moist adiabat — Available
condensate — Prognostic velocity

3. How to close the downdraught

4. Qutputs - DD evaporation fluxes -
DD transport fluxes

5. Transport of precipitation by down-
draught

6. Implications on Sedimentation
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Main Choices

ud detrains condensates common microphysics
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Convective updraught : ACCVUD

Structure :

— Initialisations

— Main vertical loop :
mixing coefficient A\,
moist adiabatic segments alternating with isobaric mixing,
including Newton loop,.. — T, Quu, Qeus Sus Low
Activity diagnostic 0,
prognostic vertical equation — w,,

— Closure : prognostic equation — o,

— Momentum profile — (u,,, v,)

— Output fluxes : condensation and transport
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— CAPE effect : entrainment is reduced when Iy, is greater,
1.e. more buoyant clouds entrain globally less.
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o= (e ) = T (7 — ) = A0
?1

A = F(é, Epy EryoTy) I = / (had — h)do
QL

— CAPE effect : entrainment is reduced when Iy, is greater,
1.e. more buoyant clouds entrain globally less.

— Ensemblist effects : the highest clouds are the less entraining ones

= reduce the upward decrease of h,,, more if (hag — hy) greater.
For this use A¢, < A¢ above.
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Prognostic Mixing

Real prognostic approach,
revision and synthesis of ideas of Piriou (2005) and Mironov (2005)
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Prognostic Mixing

Real prognostic approach,
revision and synthesis of ideas of Piriou (2005) and Mironov (2005)
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Prognostic Mixing

Real prognostic approach,
revision and synthesis of ideas of Piriou (2005) and Mironov (2005)

Uy = Py F AAG(y — ) with Ay = EM

M
)\ — {)\tm

— Turbulent contribution
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Prognostic Mixing

Real prognostic approach,
revision and synthesis of ideas of Piriou (2005) and Mironov (2005)

o=+ MKW~ ) with A = =
. ﬁE AuJu 5
A= { + A—qﬁ max((), o )7 }

— Acceleration with assumed constant mesh fraction induces additional
mixing
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Prognostic Mixing

Real prognostic approach,
revision and synthesis of ideas of Piriou (2005) and Mironov (2005)
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— Downdraught activity reduces the mixing
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Ascent and condensation
— The mixed state is raised up to the next level

L. Gerard, 29 March 2007



Ascent and condensation

— The mixed state is raised up to the next level
= condensation 0q., = —9q,
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Ascent and condensation
— The mixed state is raised up to the next level
= condensation d¢., = —dq,
= release of latent heat = L(7)q,
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Ascent and condensation
— The mixed state is raised up to the next level
= condensation d¢., = —dq,
= release of latent heat = L(7)q,
...which heats the layer ¢,(g,)d
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Ascent and condensation
— The mixed state is raised up to the next level
= condensation d¢., = —dq,
= release of latent heat = L(7)q,

...which heats the layer ¢,(g,)d
...which modifies the Ap or Ao
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Ascent and condensation
— The mixed state is raised up to the next level
= condensation d¢., = —dq,
= release of latent heat = L(7)q,
...which heats the layer ¢,(g,)d

...which modifies the Ap or Ao
= requires Newton loop updating L, ¢, R
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Ascent and condensation

— The mixed state is raised up to the next level

= condensation d¢., = —dq,

= release of latent heat = L(7)q,

...which heats the layer ¢,(g,)d

...which modifies the Ap or A

= requires Newton loop updating L, ¢, R

— Verify 7, > T, else back to (7, qu)
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Ascent and condensation

— The mixed state is raised up to the next level

= condensation d¢., = —dq,

= release of latent heat = L(7)q,

...which heats the layer ¢,(g,)d

...which modifies the Ap or Ao

= requires Newton loop updating L, ¢, R

— Verify 7, > T, else back to (7, qu)
— Handle the produced condensate 0q,., :

®o _Ldu

O(quu + Geu) eu
Ao e )

— = Qeu = QCbe

ol Po
o = idoi + (1 — o) Poe

0+ 0Gea——
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Ascent and condensation

— The mixed state is raised up to the next level

= condensation d¢., = —dq,

= release of latent heat = L(7)q,

...which heats the layer ¢,(g,)d

...which modifies the Ap or Ao

= requires Newton loop updating L, ¢, R

— Verify 7, > T, else back to (7, qu)
— Handle the produced condensate 0q,., :

®o _Ldu

O(quu + Geu) eu
Ao e )

— = Qeu = QCbe

ol Po
o = idoi + (1 — o) Poe

0+ 0Gea——

— Activity declared if T}, > T, and moisture convergence.
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Prognostic vertical equation

Prognostic model variable : w} = w, — we (assuming |w,| > |we|)
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4 (V- V)l o+ 1
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Op owy,
on Op

= source(w;)
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Prognostic vertical equation

Prognostic model variable : w} = w, — we (assuming |w,| > |we|)

ow? Op Ow;
(;;“ + (V- V),wy, + ﬁua—f] 5;9“ = source(w;)
Owy, 9 pTwu—T, buoyanc
= — — u
ot P 1 +7/Ra Tvauu g Y
«2
W
- ; (1 =0u) + RaTou(Au + Kau/g) } "drag”
1 —0,)0w:?
— ( Tu) O, auto-advection
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Prognostic vertical equation

Prognostic model variable : w} = w, — we (assuming |w,| > |we|)
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Updraught closure by Moisture Convergence

Driving forces : from larger/slower scale and local scale
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Updraught closure by Moisture Convergence

Driving forces : from larger/slower scale and local scale

buoyancy : generates the motion
supply of water vapour : generates the buoyancy by condensing.
—> assumed to be the limiting factor.
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.

Energy storage in the updraught : %(hu — he)

(difference of moist static energy between updraught and environment)
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.

Energy storage in the updraught : %(hu — he)

(difference of moist static energy between updraught and environment)

External supply :
h = _|_qu — Cp _|_¢_|_qu
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.

Energy storage in the updraught : %(hu — he)

(difference of moist static energy between updraught and environment)

External supply :
h = s+ Lq, = Cp + ¢ + Lqy

Convergence of . distributed on the whole grid box
= little impact on 1, — h.
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.

Energy storage in the updraught : %(hu — he)

(difference of moist static energy between updraught and environment)

External supply :
h = s+ Lq, = Cp + ¢ + Lqy

Convergence of . distributed on the whole grid box
= little impact on 1, — h.

the updraught sucks the moisture = q. \
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.

Energy storage in the updraught : %(hu — he)

(difference of moist static energy between updraught and environment)

External supply :
h = s+ Lq, = Cp + ¢ + Lqy

Convergence of . distributed on the whole grid box
= little impact on 1, — h.

the updraught sucks the moisture = q. \ moisture supply

= . PI
condensation = ¢, \, but 7, drives o (/1 — he)
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.

Energy storage in the updraught : %(hu — he)

(difference of moist static energy between updraught and environment)
External supply : net moisture supply drives o, (h, — h.)

Moisture transport :
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.

Energy storage in the updraught : %(hu — he)

(difference of moist static energy between updraught and environment)
External supply : net moisture supply drives o, (h, — h.)

Moisture transport :
Resolved convergence of water vapour towards the grid box

from vertical turbulent diffusion
Updraught circulation
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Updraught closure by Moisture Convergence

Driving forces : buoyancy, water vapour supply.

Energy storage in the updraught : %(hu — he)

(difference of moist static energy between updraught and environment)
External supply : net moisture supply drives o, (h, — h.)

Moisture transport :
Resolved convergence of water vapour towards the grid box

from vertical turbulent diffusion
Updraught circulation

Py Py
0oy, dp Jq | dp
hu — he — =1L — Oy\Wy — We ) 5| —
/[f%( >] g /[CVGQ Tl = )019 g
Dt Dt
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oM,V ,
dp

OM,

dp

Momentum treatment

— EV - DV, + 2*Vg
g

E—- D,
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Momentum treatment

MV _ g pv, + 74v3
dp g
oM.,

—E-D

Op ’
Yy — \Y
g dp
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Momentum treatment

MV _ g pv, + 74v3
Op g
oM.,
=FEF—-D
Op ’
@Va — guMua_V
g op
oV, _ oV
— T\ Vu -V U~
= 9% A )+ G 95
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Momentum treatment

MV _ g pv, + 74v3
Op g
oM.,
=FEF—-D
Op ’
@Va — guMua_V
g op
oV, _ oV
— T\ Vu -V U~
= 9% A )+ G 95

cloud base : V? = v’
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Momentum treatment

OIMuNu _ pxy DV, + 2%V
Op g
oM.,
=FEF—-D
Op ’
@Va — QuMua—V
g op
oV, _ oV
— T\ Vu -V U~
= 9% A )+ G 95

cloud base : V? = v’

model levels
~N N

0 6
horizontal velocity (m/s)
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Output fluxes

Condensation in the ascent dq., = condensation fluxes :

_ M,
Fl ':Fl_1+ai5qca( )
g

— - Mu
Fclcé — Fclc_€1 + (1 o ai)5QCa( q )
Mass-flux transport :
0 0 — 0J"
= 2 (M,(P — 1)) = —g—2
ot 8p( -7 )) Op

— applied, using an implicit discretization, to s, g, q;, q¢, u, v.
— no transport of g,, g5 presently.
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Other outputs

— Detrained condensate : local budget.

o A M, DM N DAOM T

QCD6UD_p + qcu(SO'u—p = 0q¢cq u_ ( uch) M O My qe

\ g gJ g g/ \ g ., o g J
sto?arges soa?ce ud tr;gsport ent;&xrined

Assuming q¢.p = Qey = 0
Then op = min(c’y, 1 — 0y) = Ged > Geu
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Other outputs

— Detrained condensate : local budget.

o A M, DM N DAOM T

QCD6O_D_p + qcu(SO'u—p = 0q¢cq u_ ( uch) M O My qe

\ g gJ g g/ \ g ., o g J
sto?arges soa?ce ud tr;gsport ent;arined

Assuming q¢.p = Qey = 0
Then op = min(o}), 1 —0y) = ¢ed > Qe
— Updraught properties = updraught environment

= Y — oy
¢=0u¢u+(1—0u)¢e = e = ——
1l —o0y,
— Vertical velocity in updraught environment :
W= Wy — We = We =W — OyuW,,
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Moist downdraught : ACMODO

Driving process : cooling associated to precipitation flux :
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Moist downdraught : ACMODO

Driving process : cooling associated to precipitation flux :

— Taking the local temperature (but requires adapted c,)

— Evaporating

— Melting

= use a part of div Fj,p, (div precipitation flux latent heat).
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Moist downdraught : ACMODO

Driving process : cooling associated to precipitation flux :
Working process : further cooling by evaporation of precipitation
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Moist downdraught : ACMODO

Driving process : cooling associated to precipitation flux :
Working process : further cooling by evaporation of precipitation
In which environment ?

— Qut of the updraught, hence over o, =1 — o,

w o O-uwu

1l -0y,

— *
We = W — OyW,,, we:

— In the precipitation area.

— The input profile not updated for what enters the closure.

— Downdraught properties 14, mesh fraction o4 and output fluxes will
be referred to o..
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Moist downdraught : ACMODO

Driving process : cooling associated to precipitation flux :
Working process : further cooling by evaporation of precipitation
In which environment ?

— Qut of the updraught, hence over o, =1 — o,

w o O-uwu

1l -0y,

— *
We = W — OyW,,, we:

— In the precipitation area.

— The input profile not updated for what enters the closure.

— Downdraught properties 14, mesh fraction o4 and output fluxes will
be referred to o..

Phase partition for evaporation : determined by the phase of the precipi-
tation , instead of «a;(T)
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Evaporating descent

— Start at top from (Tye, Que)-
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Evaporating descent

— Start at top from (Tye, Que)-
— Isobaric mixing, A\; taken constant : fwd = Aa(¥; Yq)
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Evaporating descent

— Start at top from (Tye, Que)-
— Isobaric mixing, A\; taken constant : fwd = \a(V. g)
— Available precipitation =
= 0 = dry non entraining adiabat else Newton loop
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Evaporating descent

— Start at top from (Tye, Que)-
— Isobaric mixing, A\; taken constant : fwd = \a(V. g)
— Available precipitation =
= 0 = dry non entraining adiabat else Newton loop
— Store evaporation increments 0q.,
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Evaporating descent

— Start at top from (Tye, Que)-
— Isobaric mixing, A\; taken constant : fwd = \a(V. g)
— Available precipitation =
= 0 = dry non entraining adiabat else Newton loop
— Store evaporation increments 0q.,
— Estimate cumulative evaporation flux to adapt

k=l—1

T 1
FevP*l_l — g 56]6@ O'gwlj = ~
— g\t

*
_FevP
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Evaporating descent

— Start at top from (Tye, Que)-
— Isobaric mixing, A\; taken constant : fwd = \a(V. g)
— Available precipitation =
= 0 = dry non entraining adiabat else Newton loop
— Store evaporation increments 0q.,
— Estimate cumulative evaporation flux to adapt

k=l—1
— 1
FG’U =l — 5 ev O-kwk j ~
p Z g/t q d%d
k=1
— Activity diagnostic : =1 and

T,q < T, or wg > w, at current or above level.

*
_FevP
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Prognostic downdraught velocity

— Use absolute velocity wq (not correlated with w.).

Owy . 5’]0 Owq
N + (V- V)ywa + nda—na—p = source(wq)

92 ™ Tvd — Tve
= — buoyancy
14+~ Ry Tyelya

RaTv
— Ogp {()\d + Kaa/9) d} (Wi —wp)® drag
aw3 surface braking (if wg > 0)
B d
(psurf — p)ﬁ
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Downdraught closure

Downdraught does not depend on a larger scale forcing : driving forces coming
— from the same grid box
— with comparable time scale
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Downdraught closure

— Driving force : cooling associated to precipitation flux

Py

Ol pdp 2
- / o W2

bt
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Downdraught closure

— Driving force : cooling associated to precipitation flux

oF,pd
— Consumption : work of the buoyancy force

/Fbgdﬁ@ [Wm_Q]
P9 g
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Downdraught closure

— Driving force : cooling associated to precipitation flux

— Consumption : work of the buoyancy force

Py

d

/Fbgdﬁ—p [Wm_Q]
Pg g

Dt

— Storage : in moist static and kinetic energy :

Po s
0o g wg — wsdp

W'/(hd_h;H 2(pg)* g

bt
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Downdraught closure

— Driving force : cooling associated to precipitation flux
— Consumption : work of the buoyancy force
— Storage : in moist static and kinetic energy

Py Py Pp
0oy / w2 — w?dp wq dp OF),pdp
—_ (hd—hé)—l— = :Od/Fb——+€'/—g
ot 2(pg)* g pg g dp g
sto?%ge —cons?l?nption in\prut
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ACMODO output fluxes
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ACMODO output fluxes

Evaporation in the descent 0¢., = evaporation fluxes :

— - M
FevPl — F’evPl_1 + 56]6@%

Fevs — L'ev P Fevr — L'evP (1 — >
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ACMODO output fluxes

Evaporation in the descent 0¢., = evaporation fluxes :

— - M
FevPl — F’e’UPl_1 + 5QGU%

Fevs — LevP Fem“ — LevP (1 —

Mass-flux transport :

oy 0 —\ O
ot = gy Malta =) = —g—

Op
— applied, using an implicit discretization, to

Sy Qu, Giy 4y (Wlth qid — 0= qu)1 u, v.
— no transport of ¢, gs presently.

4

RMI
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Transport of precipitation species by downdraught
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Transport of precipitation species by downdraught

— DD subsaturated : no condensates inside
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Transport of precipitation species by downdraught

— DD subsaturated : no condensates inside
= precipitation at the border
— wp # wy to take water vapour away.
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Transport of precipitation species by downdraught

— DD subsaturated : no condensates inside
= precipitation at the border
— wp # wy to take water vapour away.

wg =0, wp >0 — evap and cooling
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Transport of precipitation species by downdraught

— DD subsaturated : no condensates inside
= precipitation at the border
— wp # wy to take water vapour away.

wg =0, wp >0 — evap and cooling

—  wqg>0— neardd : wp 7, cooling ~\
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Transport of precipitation species by downdraught

— DD subsaturated : no condensates inside
= precipitation at the border
— wp # wy to take water vapour away.

wg =0, wp >0 — evap and cooling
—  wqg>0— neardd : wp 7, cooling ~\

wrqg < 0 — in return current : wp \,,, cooling ~ ~
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Transport of precipitation species by downdraught

— DD subsaturated : no condensates inside
= precipitation at the border
— wp # wy to take water vapour away.

wg =0, wp >0 — evap and cooling
—  wqg>0— neardd : wp 7, cooling ~\

wrqg < 0 — in return current : wp \,,, cooling ~ ~

= op reduced downwards?

wp increased by dd
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Downdraught Transport vs Sedimentation
— Downdraught requires to know P, Fj,p
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Downdraught Transport vs Sedimentation
— Downdraught requires to know P, Fj,p
— Downdraught evaporates precipitation — F,,p
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Downdraught Transport vs Sedimentation
— Downdraught requires to know P, Fj,p
— Downdraught evaporates precipitation — F,,p

F..p — F.,p+ 0& and P — P —90&
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Downdraught Transport vs Sedimentation
— Downdraught requires to know P, Fj,p
— Downdraught evaporates precipitation — F,,p

F..p — F.,p+ 0& and P — P —90&

— Evolution equation :

5qP B AFevp AP
5 TRy TRy

RMI L. Gerard, 29 March 2007



Downdraught Transport vs Sedimentation
— Downdraught requires to know P, Fj,p
— Downdraught evaporates precipitation — F,,p

F..p — F.,p+ 0& and P — P —90&

— Evolution equation :

5qP B AFevp AP
5 TRy TRy

Where
gr, (s are at the end of the time step
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Downdraught Transport vs Sedimentation
— Downdraught requires to know P, Fj,p
— Downdraught evaporates precipitation — F,,p

F..p — F.,p+ 0& and P — P —90&

— Evolution equation :

5qP B AFevp AP
5 TRy TRy

Where
qr, s are at the end of the time step
P, F.,p are averages over the time step
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Downdraught Transport vs Sedimentation
— Downdraught requires to know P, Fj,p
— Downdraught evaporates precipitation — F,,p

F..p — F.,p+ 0& and P — P —90&

— Evolution equation :

5qP AFevp AP
Yr __g(BLar | OP)
ot Ap Ap
Where

qr, s are at the end of the time step

P, F.,p are averages over the time step

Finite velocity sedimentation = 0P occurs later than 0F,,p.
Transient is missed |
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Downdraught Transport vs Sedimentation (2)
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Downdraught Transport vs Sedimentation (2)

= Sedimentation should be redone :
evaporation reduces P!~ = collection in all subsequent layers, etc.
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Downdraught Transport vs Sedimentation (2)

= Sedimentation should be redone :
evaporation reduces P!~ = collection in all subsequent layers, etc.

* Neglecting the effects on collection, apply evaporation with a delay
(or vertical offset) based on the pdf Ps; :

PZ — PZ _ (PBFevPZ + (1 — P3)F€’Upl—1)
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Downdraught Transport vs Sedimentation (2)

= Sedimentation should be redone :
evaporation reduces P!~ = collection in all subsequent layers, etc.

* Neglecting the effects on collection, apply evaporation with a delay
(or vertical offset) based on the pdf Ps; :

PZ — PZ _ (PBFevPZ + (1 — P3)F€’Upl—1)

* Do not modify q,, g5 at this time step
but dd activity intervenes in microphysics at next time step :

— to estimate the sedimentation velocity
— to reinforce evaporation
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