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storage advection sources subgrid contributions

– B.L. turbulence : if small eddies ⇒ subgrid, local and mostly isotropic.
– Deep convection

– is anisotropic : w′ � u′, v′ ;
– implies large eddies (x-z), with w′ � w,

– requiring a non-local (scheme and) closure — e.g. mass-flux scheme
– becomes partly resolved by horizontal grid...
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– Vertical motions in updraught (and downdraught) mostly resolved...
. ...subsequent saturation also resolved.

– Non-hydrostatic framework.

– Only small eddies are subgrid
– mostly isotropic, local, (down-gradient)

. – e.g. prognostic TKE scheme
– CBL may still ask a non-local closure...

– Subgrid variability affects saturation, e.g. via a pdf (Smith).

⇒ no need of specific parametrization for deep convection,...
. ...for resolutions finer than... ?
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Observed individual cell widths

Single updraught width often between 500m and 4km – wider above
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Observed individual cell widths

Single updraught width often between 500m and 4km – wider above

Single downdraught width often between 500m and 2km – wider below
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Coarse-resolution model

– The small eddies — mostly isotropic, local, down-gradient —
handled by a turbulent diffusion scheme
. (e.g. gradient-transport or prognostic TKE).
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Which part is resolved ?

Krueger (2001) : 29-day 2-D CRM simulation, 4x=2km.

– Assumes that the 2-km resolution
resolves all convective cells.

– 2D-model⇒ take the square of the linear
fractions

For instance : α=0.04 at 4x=32 km,
0.25 at 8km, 0.5 at 4km.
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The parametrization problem

grid column
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Moist processes :
traditional approach (Arakawa 1993)
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⇒ Quasi Equilibrium Arakawa-Schubert, 1974
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Dynamics

turbulent diffusion

radiative effects

anvil

gravity waves

Convective circulation extends gradually
to the Rossby radius of deformation

”Large-scale” 6= ”Non convective”

causality discussion
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The parametrization problem

initial profiles
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”Large-scale” and
. ”Moist-convective” overlap
(Mapes 1997)
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The parametrization problem
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(Mapes 1997)
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precipitating
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Moist-dry separation
(Mapes 1997)
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High resolution LAM

– Deep convection is more and more resolved : the resolved vertical velocity increases
when decreasing the grid-box length.
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High resolution LAM

– Deep convection is more and more resolved : the resolved vertical velocity increases
when decreasing the grid-box length.

⇒ so does the resolved saturation and condensation !
– Time step becomes shorter – prognostic approach required.
– Interactions between concurrent parametrizations must be handled properly.

L. Gerard, 28 March 2007
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Makeshift solutions for the grey zone

– Skip the grey zone : Arome model < 2km.

– Use the diagnostic convective parametrization where no longer valid, and be aware
of the interpretation : UKMO.

– Grabowski(2001) : embedded 2-D Cloud-Scale Resolving Model : useful for climate,
less for operational forecast.
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Benefits of our solution

– Integrated cloud and precipitation package, coherent treatment of transports :
essential step towards unified physics.
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Benefits of our solution

– Integrated cloud and precipitation package, coherent treatment of transports :
essential step towards unified physics.

– Scientific : Advance in understanding the problems.

– Complete viability of the grey zone resolutions : gain of computing time or power,
of storage, yields more forecast opportunities.

– Improvement at all resolutions.

– Coupling, data assimilation.

– Possibility of a variable mesh size keeping a single compatible physics.

L. Gerard, 28 March 2007



Finding the fair share out of the waterhole

qt9 = qv9 + q`9 + qi9
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Finding the fair share out of the waterhole

qt9 = qv9 + q`9 + qi9

⇓

qsat(T9) −→ resolved condensation → Pst

Deep Convection → Pcu
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Finding the fair share out of the waterhole

qt9 = qv9 + q`9 + qi9

⇓

qsat(T9) −→ resolved condensation → Pst

modulate ? ⇓

MOCON −→ Deep Convection → Pcu
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Finding the fair share out of the waterhole

qt9 = qv9 + q`9 + qi9

⇓ F 0
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Cascade General layout

(Fix negative contents

from advection)

}
−→ J

cor
` , J

cor
i , J

cor
v

[q
∗
v, q
∗
i , q
∗
` ]
↙

Resolved cloud fraction

f
st↙

(f
∗
, Radiation)

↘
(Tsurf , Turbulent diffusion) −→ J td` , J

td
i

J tdv , J
td
S

[q
∗
v× , q

∗
i , q
∗
` , T

∗
]
↙

Resolved condensation −→ F
st
vi , F

st
v`

[q
∗
v, q
∗
i , q
∗
` , T

∗
]
↙

moisture

conver-

gence

→ Deep convection −→
F cu
vi , F

cu
v` ,

Jcuv , J
cu
i , J

cu
` ,

JcuS , J
cu
V

[q
∗
v, q
∗
i , q
∗
` , T

∗
]
↙
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cu

= σD + σu,

αcu =
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vc
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vc

→ f
eq

Microphysics −→ Fis, F`r, [F`i],

Pr, Ps, Frv, Fsv

FhP
↙

[q
∗
v, q
∗
i , q
∗
` , T

∗
]
↙

↘
Downdraught −→
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∗
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∗
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Thunderstorms on Saturday 10 September 2005
Accumulated rain 17 to 18h utc

Wideumont Radar

Intense small cells produce limited amounts
when averaged over a 50 km2 grid-box area

7.00km MaC full package
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7.00km MaC full package 7.00km Resolved scheme alone
updraughts forced to wider than realistic scale
(Deng and Stauffer 2006)
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updraughts forced to wider than realistic scale
(Deng and Stauffer 2006)

4.00km MaC full package 4.00km Resolved scheme alone
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2.18km MaC full package 2.18km Resolved scheme alone

visible convergence, not yet complete...
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2.18km Subgrid part 2.18km Resolved part

...subgrid scheme cares for non hydrostatic effects in the frame of the hydrostatic dynamics
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