ALARO

status of developments and introduction into operational service

Plan of presentation

- Pre-ALARO
 - 'Dry' physics.
- ALARO-0, step 1
 - Equations and interface;
 - Resolved microphysics;
 - Radiation;
 - Turbulence;
 - Cloudiness issue.
- ALARO-0, step 2
 - 3MT and perspectives.

Pre-ALARO part (~ 2003, 2004)

- Demand of MFSTEP project
 - Good parameters for coupling shelf-models:
 - Wind (breeze)
 - Temperature and humidity
 - Solar and thermal radiation flux
 - Cloudiness
 - Heat flux (sensible, latent)
- Demand of forecasters
 - Improve low-level cloudiness and temperature

Pre-ALARO developments

- SLHD => more realistic diffusion (sea cyclogenesis);
- Gustiness => more realistic boundary layer over sea;
- Mean orography and new GWD parameterization => better description of the coastal areas and winds;
- Radiation scheme and Cloudiness scheme (inversion-layer clouds, tunings, geometry)
 better radiation fluxes
- Reference (Brožková et al., 2006)

ALARO-0, step 1

developments (1/7) the interface to

the dynamical core; Reference: Catry et al., 2007

- Set of standard simplifying hypothesis;
- Mass weighted (barycentric) system;
- Microphysics: phase changes pass by QV
- Loss of mass due to precipitation is considered;
- Thermodynamic equation is derived for both HPE and compressible EE equations;
- Flux conservative form of equations gives rules for interfacing (CPTEND_NEW in the code).

ALARO-0, step 1

- sequipina scates and parallelism in calling parameterization routines
 - Flux-type interface (// in output) can cope with the two approaches (seq. or // in input).
 - The routines do not need "to know" in which context they are called.
 - Negative values of water species (advection) are handled also by "fluxes of negative values corrections" quite easily.
 - The existing example of the cascade: 3MT
 - Causality is taken into account via the cascade;
 - The output is done in a parallel way.

ALARO-0, step 1 developments (3/7)

- Resolved microphysics
 - Method of development:
 - Start from the operational diagnostic scheme (ACPLUIE);
 - Respect constraints of the governing equations: 5 prognostic water species (qv, ql, qi, qr and qs);
 - Add new processes;
 - Look for efficient algorithms: PDF-based sedimentation, reference Geleyn et al., 2007;
 - Prepare for future mixed use (resolve and convective in 3MT): include clouds- and precipitations geometry;
 - Stay modular in all possible aspects.

ALARO-0, step 1 developments (4/7)

- Operational status:
 - Auto-conversion (ACACON): Sundquist functions + Wegener-Bergeron-Findeisen effect;
 - Collection (ACCOLL): similar to Lopez et al., 2002;
 - Evaporation/melting of falling precipitation (ACEVMEL): like in the pre-ALARO scheme;
 - Pseudo-graupel effect (mechanical), also ACPLUIE-like;
 - Statistical sedimentation.
- Modularity so far: statistical sedimentation makes it easy
 - At the level of processes (ARPEGE alternative coded; MESO-NH features might be included as options, too);
 - At the level of cloud geometry (maximum/random or random overlap options coded);
 - At the level of falling speed (constant or precipitation density dependent options coded);
 - At the level of the PDF choice for sedimentation.

ALARO-0, step 1 developments (5/7)

- Goal: to get reasonably cheap but realistic scheme
- Method:
 - Choice of NER formalism (first implementations made within the pre-ALARO phase)
 - Separate the issues of clear-sky computations and interaction with clouds
 - Improvement of cloud optical properties (new saturation cloud model already operational)
 - Improvement of the statistical model in the application of NER method and introduction of Voigt effect (operational; references: Geleyn, Bénard and Fournier, 2005; and Geleyn, Fournier, Hello and Pristov, 2005)
- Still lot of to do (transmission functions, intermittency strategy, ...)

ALARO-0, step 1 developments (6/7)

- Method: similar to the microphysics start from the operationally proven numerics and create a modular backbone
- First realization: pseudo-prognostic TKE scheme, bridging diagnostic and prognostic issues (operational; reference: Geleyn et al., 2006)
- Next steps:
 - Introduce more sophisticated dependency on stability conditions;
 - Use alternative mixing lengths from full TKE-schemes;
 - Mimick complete TKE equation while profiting from the numerical advantages of p-TKE.

ALARO-0, step 1 developments (7/7)

- Cloudiness issues
 - Cloudiness for here and there, computed by this and that: could we find an unifying concept?
- Cloudiness computations:
 - For resolved condensation/evaporation scheme ("resolved cloudiness")
 - For diffusion of moist conservative variables (optional)
 - For microphysics
 - For convection (prognostic scheme in 3MT)
 - For radiation all processes (sources): resolved (diagnostic or prognostic), convective, inversion => currently there is effort to start reconciliation from there.

ALARO-0, step 2: 3MT scheme

- Grey zone challenge;
- Concept of separating Transport and Microphysics;
- Combination with prognostic convective scheme.
- Goal: to reach the operational status while having the same level of modularity as for resolved precipitation process, turbulence and radiation.
- References: Piriou et al., 2007; Gerard, 2007; Gerard and Geleyn, 2005

ALARO-0, step 2: 3MT sch Main Choices

ALARO-0, step 2: 3MT

Cascade General layout

ALARO-0, step 2 developments

- SURFEX issues
 - Split of ACDIFUS
 - Better coupling

Cost issue (benchmark of precy32t1 on NEC/SX68)

Memory use

Some scores

- ALARO-0 (step 1) was checked against pre-ALARO: quite satisfactory results, especially for precipitation;
- But what about another reference?
- Now there is better possibility of cross-checks using cy32t1;
- First 'orientation test' was done for central European region, winter and summer periods, in comparison with ARPEGE (ALADIN/France) options => these results should not be however taken as something absolute.

Some scores: summer STRAPRO=solid black AL/FR= red dashed

T 850 hPa

RH 700 hPa

Z 500 hPa

W 850 hPa

Some scores: winter (screen

Development targeted for the grey zone, care for efficiency, modularity in preparing further steps and good intermediate results => confidence

A0/A D	Winter					Summer				
		V	Phi	Т	Hu		V	Phi	Т	Hu
	250	0	-	-	+	250	+	_	0	0
	500	-	-	-	-	500	+	+	+	+
	700	-	0	+	+	700	-	-	++	+
RMS	850	+	-	++	+	850	+	-	+	+
	Surf	0	+	+	++	Surf	+	-	+	+
		V	Phi	Т	Hu		V	Phi	Т	Hu
	250	_	-	0	+	250	_	+	_	0
	500		-	-	-	500	-	+	+	+
	700	-	+	+		700	-	+	++	++
Bias	850	+	-	++	++	850	0		++	++
	Surf	+		+	++	Surf	_		+	+