

Research and Development

2021 Joint LACE Data Assimilation & DAsKIT Working Days, Ljubljana, 22-24 September 2021

Assimilation of the ground based GNSS in 3DVar AROME

- AROME setting at RMI
- Stations selection procedure
- Passive assimilation and static bias evaluation
- Single obs exepriment
- Active assimilation
- Results & Conclusion

Operational AROME setting at RMI

Geometry	1.3km , 564x564 grid points , 87 levels
Cycle	43t2bf11
Coupling model	ARPEGE , every 1 hour
Forecast range	Up to 48
Surface initialisation	CANARI_Oimain
Upper-air initialisation	None
Observation	SYNOP (U10, T, H, Z)

- 3 hours cycle RUC
- The suite is running on ecflow environnement

GNSS stations selection procedure

- The GNSS observations are collected from the GTS (ISXT*,ISXD* and ISXX*) in BUFR format.
- · Identification of the stations contained in the recieved BUFR files
- Three E-GVAP centers are found in the GTS BUFR files(ROBQ, GF1R and SGN1)
- The observation frequency is 15 minute

ROBQ

GNSS stations selection procedure

- One station may be processed by multiple processing centers.
- The station-processing centre pair is selected which has the smallest standard deviation of observation minus guess.
- The pre-selection procedure led to the avalability of 128 GNSS stations included in the AROME
 Blegium domain
 - ROBO GF1R SGN • 65 : ROBQ • 46 : GF1R • 17 : SGN1 Latitude Longitude

Stations monitoring & static bias evaluation

- The objective of this part is to evaluate the static bias and standard deviation of each station individually, by the so called the «passive assimilation »
- In order to evaluate the ZTD static bias , the monitoring period from 01.01.2021 until 31.01.2021 is chosen
- The ZTD (Zenith Total Delay) measured by each station is comapared to its model counterpart without influencing the analysis
- Before the passive assimilation the whitelist (list_gpssol) contains the stations to be monitored by assuming that the static bias of each station is equal to zero.
- To avoid the station blacklisting, the variable GPSOLMETHOD should be set to « MEAN » or « CENT » in the namelist « namel_bator »

&BUFR GPSSOLMETHOD= « CENT » or « MEAN » /

Station Name	Latitude	Longitude	Altitude	Period(minute)	ZTD bias (m)	Sigma ZTD (m)
BRUXROBQ	50.80	4.36	113.0	15.	0.0	0.0

Stations monitoring & static bias evaluation

During the monitoring period :

- 128 stations are used and the static bias of each one is evaluated from the CCMA updated by the screening step.
- The stations mean biases show variations between ~2 and 13 mm (found from 16811 OMF pairs)
- The error distribution shows a gaussian shape with a slight shift to the positive values
- The monitored stations are added to the list_gpssol for active assimilation

Single obs experiment

• According to Smith and Weintraub (1953), the ZTD is the tropospheric wet part of the total refractivity integrated over the model levels.

$$ZTD = 10^{-6} \int_{zg}^{TOP} (k_1 \frac{P}{T} + k_3 \frac{e}{T^2}) dz$$

Where Zg is the station height , k1=77.6 K/hPa , k3=3.7391 10⁵ , and TOP is the height of the last model level , 1 hPa currently in AROME

• In ARPEGE/IFS, an additional term was added into the observation operator

$$J_o^{ZTD} = \frac{1}{2} \left(H(x') - y' \right)^T R^{-1} \left(H(x') - y' \right) \right)$$

- x ': The vecor of analysis increments
- y': Observation increments
- H: Observation operator
- R : Observation covariance matrix

Single obs experiment

- The station BRUXROBQ is randomly chosen to evaluate the impact of a single station active assimilation
- The impact is largest in the low to middle troposphere with a maximum around 800 hPa
- The horizontal extent of increments is about 160 km
- The specific humidity increment (Analysis- guess) show positive values . The ZTD assimilation inscreases the analysis upper-air moisture

Active GNSS assimilation experiment

• In order to evaluate the impact of ZTD assimilation on the forecast, two experiements are carried out during 1-month period (01-05-2021 until 31-05-2021)

Experiment name	period	Assimilation technique	Assimilated parameters
AR13_OPER	01/05/2021 until 31/05/2021	CANARI	H2m,T2m,Z, U10 from SYNOP
ARGPS	01/05/2021 until 31/05/2021	CANARI+3DVar	 H2m,T2m,Z, U10 from SYNOP U,V from AMDAR U,V,T from TEMP ZTD from GNSS

 The upper-air humidity is disabled in the observation operator from the AMDAR and TEMP using the namelist bloc NAMCOSJO during the minimisation (see the module yomcosjo.F90 in cy43t2)

Impact on the initial departures

- The number of assimilated GNSS stations varies between ~54 and 68.
- The assimilation system tends to brought the model to the ZTD observation at every analysis cycle

Impact on the surface parameters

- The 2m temperature and humidity verification is carried out using 22 synoptique stations.
- The pictures display the observation minus forecast (O F).

Impact on the upper-air forecast

- The upper-air forecast are verified against 4 radio-sonding stations.
- The model value is extracted using nearest neighbor interpolation at every standard atmospheric level.

Impact on the wind forecast

- The upper-air forecast are verified against 4 radio-sonding stations.
- The model value is extracted using nearest neighbor interpolation at every standard atmospheric level.

Impact on the precipitation skill Probabality of detection (Hit rate). 6h accumulated precipitation

Hit rate

•

1

4

Precipitation threshold (mm)

6

Conclusion

- The stations used from three processing centers cover sufficiently the AROME Belgium domain
- The single station assimilation showed the horizontal and vertical extent of the increments over the model grid points
- The assimilation of the ZTD from GNSS have a potential to improve either surface and upper-air temperature and humidity forecast
- The use of GNSS ZTD has a positive impact on the small amount precipitation forecast skill

Future work

- Evaluation of the observation correlation and apply a possible thinning
- Compare the GNSS DA with static with VarBC