Radiance bias correction in LAM Aladin/CZ

Satellite bias detection

Satellite bias detection based on Observation-minus-Guess departures (OmG) in observation space:

$$bias_{satellite} = \langle y - H(x) \rangle_{ij}$$

<u>Assumption</u>: H(x) is perfect

- □Errors in NWP model
- \Box Errors in observation operator *H* (RTTOV, ...)
- Errors in data pre-processing (QC, cloud-mask, ...)

Global vs. Limited Area Models (LAM)

How to deal with in LAM?

- 1) VarBC parameters from global (MF, Met-Office, JMA, ...)
 - □availability
 - □ model consistency:
 - model cycle (model error, RTTOV)
 - vertical resolution (predictor selection)
- 2) VarBC parameters cycling in LAM:
 - Variational Bias Correction (VarBC)
 - assimilation window
 - vertical resolution
 - model bias

Outline

Background

LAM issues

- \Box Assimilation window
- □ Vertical resolution
- □ Model bias
- VarBC in LAM
- Summary
- Future plans

Background

Model Aladin/CZ:

 \Box Cy38trt1, dx=4.7 km, 87 vertical levels (model top ~ 0.5 hPa)

 \square BlendVar \rightarrow DFI Blending + 3D-Var

□ 6h-guess cycling; 6h-AW; VarBC 24h-cycling

• Observation:

□ synop, temp, amv, amdar

□ NOAA-18, NOAA-19, MetOp-A, MetOp-B, Meteosat-10

□ AMSU-A, AMSU-B, MHS, IASI, SEVIRI

Assimilation window (AW)

Study of OmG within 6h-AW in 3D-Var system:

 \Box assumption in AW: $T_{H(x)} = T_y$

- **Results:** (more details in [1])
 - □ observation error (standard deviation of OmG) and satellite bias (mean of OmG) increase:
 - the edge of AW
 - non-stationary weather situations
 - □ worse bias correction quality
 - □ worse cloud detection scheme quality (based on OmG)

Vertical resolution

- Study of OmG departures with regrads to a vertical resolution of NWP models
- Impact of a sparse resolution (in stratosphere) on a satellite bias and observation error

Vertical resolution between LAM and global models

Results

AMSU-A observation errors for Aladin/CZ and Arpege

- Results:
 - rejection of VarBC predictor P_5 (thickness of the layer 10-2 hPa)
 - rejection of stratospheric peaking channels:
 - AMSU-A (ch 11-13); IASI-CO₂ (ch < 212)

Model bias

- study a response of VarBC scheme to a NWP model bias
- based on the difference in bias correction between [2]:

 $bias_{model} = bcorr_{VarBC} - bcorr_{StatBC}$

- VarBC:
 adaptive scheme; response to model bias at each cycle
- StatBC: regression over one-year data; resistant to model bias

Results:

bias detection: seasonal & daily (flow-dependent) bias

Model bigg

Key Idea:

 \rightarrow control changes of bias correction in each cycle (*\delta bcorr*) to reduce the flow-dependent model bias

adaptive scheme; response to model bias at each cycle

 StatBC: regression over one-year data; resistant to model bias

Results:

bias detection: seasonal & daily (flow-dependent) bias

VarBC in LAM Aladin/CZ

Variational Bias Correction (VarBC) scheme [3]:

$$J(x,\beta) = J_b + (\beta_b - \beta)^T B_{\beta}^{-1} (\beta_b - \beta) + [y - h(x,\beta)]^T R^{-1} [y - h(x,\beta)] \quad (1)$$
$$h(x,\beta) = h(x) + \sum_{i=0}^N \beta_i P_i \qquad (2)$$
$$B_{\beta} = diag(\sigma_{\beta_1}, \cdots, \sigma_{\beta_n}) \quad ; \quad \sigma_{\beta}^2 = \sigma_o^2 / N_{bg} \qquad (3)$$

Modifications

• New N_{bg} parameter in (4) depends on *observation number N* in each cycle

- Allows to change β (δ bcorr) slowly when N is larger than a *reference number* N_{min}
- $N_{_{min}}$ is set empirically to avoid overestimation of β

Results

Adaptivity of β-parameters

Conclusion

Observation error increase within 6h-AW:

□ impact on a quality of VarBC and cloud-detection scheme

□ set the shorter AW length for each satellite instruments; 3h-RUC

• Observation error increase due to a sparse vertical level coverage in stratosphere:

 \Box rejection of the VarBC predictor P₅ and stratospheric-peaking channels for AMSU-A and IASI instruments

A response of VarBC scheme to the flow-dependent NWP model bias:

 \Box new background error constraint B_{β} on β parameters depending on an observation number in each cycle

[□] promising results in a reduction of VarBC response to the flow-dependent model bias

□ Shortcomings:

- settings δbcorr* limit in each cycle
- slower adaptation of β to satellite instrument corruptions:
 - \square using in combination with a monitoring system
- how to distinguish between the model and the satellite bias in σ_{β}

Future work in satellite DA

Finish the adjustment of VarBC scheme to LAM conditions.

- New VarBC predictors being more appropriate for LAM.
- Optimal thinning distance and observation error for satellite data

Acknowledgements and References

This study was supported by the project TAČR TH01010503.

[1] Benacek, P. (2007): Assimilation window in 3D-Var. RC LACE websites: http://www.rclace.eu/File/Data_Assimilation/reports/AssimWin.pdf

[2] Auligné, T., McNally, A. P., Dee, D. P. (2007): Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc. 133: p. 631-642

[3] Derber, J. C., W.-S. Wu (1998): The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Weather Rev., 126: p. 2287-2299.

Thank you for your attention.

Regression coefficients used in (4)

Sensor/Coeficient	C [10 ²]	NBG _{min} [10 ²]	N _{min}
AMSU-B/MHS	146 ± 15	69 ± 18	200
AMSU-A	46 ± 5	61 ± 6	50
SEVIRI	280 ± 35	45 ± 35	400

New background error constraint on β parameters