Satellite data assimilation in LAM

Patrik Benáček

Czech Hydrometeorological Institute Department of Meteorology and Environment Protection RC-LACE

E ► < E ►</p>

- data assimilation (DA) methods were developed/tuned for large-scale global models
- still many questions in using this methods in LAM at convective scale
- simplification of DA methods currently best compromise 3D-Var (Montmerle, 2011):
 - cheap, fast no TL/AD, no integration, B not flow dependent
 - considering observation valid within assimilation time-window (AW)

크 에 크 어

- data assimilation (DA) methods were developed/tuned for large-scale global models
- still many questions in using this methods in LAM at convective scale
- simplification of DA methods currently best compromise 3D-Var (Montmerle, 2011):
 - cheap, fast no TL/AD, no integration, B not flow dependent
 - considering observation valid within assimilation time-window (AW)

Main goals:

Improve assessment of satellite data using simplified 3D-Var in LAM

examination of AW for polar satellite data

- data assimilation (DA) methods were developed/tuned for large-scale global models
- still many questions in using this methods in LAM at convective scale
- simplification of DA methods currently best compromise 3D-Var (Montmerle, 2011):
 - cheap, fast no TL/AD, no integration, B not flow dependent
 - considering observation valid within assimilation time-window (AW)

Main goals:

- improve assessment of satellite data using simplified 3D-Var in LAM
 - examination of AW for polar satellite data
- examination of bias correction method (VarBC):
 - adaptation to LAM conditions (re-tuning)
 - initialization methods for LAM
 - initialization methods for sensor IASI

- data assimilation (DA) methods were developed/tuned for large-scale global models
- still many questions in using this methods in LAM at convective scale
- simplification of DA methods currently best compromise 3D-Var (Montmerle, 2011):
 - cheap, fast no TL/AD, no integration, B not flow dependent
 - considering observation valid within assimilation time-window (AW)

Main goals:

- improve assessment of satellite data using simplified 3D-Var in LAM
 - examination of AW for polar satellite data
- examination of bias correction method (VarBC):
 - adaptation to LAM conditions (re-tuning)
 - initialization methods for LAM
 - initialization methods for sensor IASI
- satellite DA using short assimilation cycle (3h-RUC):
 - a new channel selection for satellite data

Outline

Introduction Model Setup

Assimilation window

- Definition
- Time-delay bias
- AW length assessment

3 Variational Bias Correction

- Definition
- Initialization methods
- VarBC difficulties in LAM

3h-assimilation cycle

VarBC assessment

Conclusion

Experimental setting Aladin/CZ

- CY38, Middle Europe (2.1W-27.4E, 40.6N-55.7N), 3h-coupling with Arpege
- $\delta x = 4.7$ km, 87 vertical levels (up to 0.1 hPa)
- BlendVar scheme = DFI blending + surface analysis (OI) + 3D-VAR
- 6h-forward intermittent cycle
- RTTOV-9, ensemble B-matrix (Beere et al., 2006), VarBC
- OBS: SYNOP, TEMP, SATEM (NOAA-18, 19, MetOp-A, B, MSG-10)

Definition

- simplification of 3D-Var making assumption $M_i = I$ over AW (stationary problems)
- supposing stationary model field x_b within AW (no integration)
- observations y_i collected within AW are compared with stationary model field valid at analysis time x₀
- increasing time-delay δt between observation and analysis time leads to time-delay bias
- the bias depends on AW length, weather conditions (cyclones/front lines), measured quantities (T, RH)

Satellite data coverage

- satellite crossing-times over LACE/CZ domain (collected data over 1-month period)
- time-delay 2 3 h between observation and analysis time (except of N19)

Case study experiment

- passive assimilation of MetOp-B data on 3.9.2013 measured at 9:20 UTC (non-stationary weather conditions)
- time-delay simulation by:
 - DA at 09 UTC $\rightarrow \delta t =$ 20 min
 - DA at 12 UTC $\rightarrow \delta t =$ 160 min
- spatial assessment of obs-fg (OG) differences (from ECMA db)
- 2D-grid point field generated by Gaussian kernel smoothing method
- separately for sensors sensitive to
 - T (AMSU-A, IASI-CO2)
 - RH (MHS, IASI-RH)

Passive assimilation mode:

- data passed to the assimilation with a status both active and passive
- artificial inflation of observation error (STD)
- in order to estimate satellite bias correction without analysis degradation
- set flag FAIL (EXPERIMENTAL) in mf_blacklist.h

Time-delay bias

• Humidity channels affected by strong humidity dynamics in troposphere (by cold/warm front, clouds)

OG departures for MHS/channel-3 at 09 UTC.

9

Time-delay bias

• Humidity channels affected by strong humidity dynamics in troposphere (by cold/warm front, clouds)

OG departures for MHS/channel-3 at 12 UTC.

6

Humidity channels affected by strong humidity dynamics in troposphere (by cold/warm front, clouds)

OG departures for MHS/channel-3 at 09 UTC (right) and 12 UTC (left).

Low-T, surface-T sensitive channels affected due to solar insolation during a day:
measurements (9:20) assimilated at 09/12 UTC have warm/cold impact

OG departures for AMSU-A/channel-5 at 09 UTC (right) and 12 UTC (left).

• High-T, middle-T sensitive channels affected due to temperature advection:

OG departures for AMSU-A/channel-8 at 09 UTC (right) and 12 UTC (left).

• Reduction of time-delay bias due to cloud detection scheme (IASI):

OG departures for IASI/channel-219 at 09 UTC (right) and 12 UTC (left).

- based on monitoring of bias value depending on observation time-delay
- one-month period data assimilated at 0,6,9,12,15,18 UTC (sample size)
- increasing bias due to time-delay detected for:
 - MHS affecting all humidity channels (3-5)

- based on monitoring of bias value depending on observation time-delay
- one-month period data assimilated at 0,6,9,12,15,18 UTC (sample size)
- increasing bias due to time-delay detected for:
 - MHS affecting all humidity channels (3-5)
 - AMSU-A low, high-troposphere channels (5,8,9)

- based on monitoring of bias value depending on observation time-delay
- one-month period data assimilated at 0,6,9,12,15,18 UTC (sample size)
- increasing bias due to time-delay detected for:
 - MHS affecting all humidity channels (3-5)
 - AMSU-A low, high-troposphere channels (5,8,9)

AMSU_A : chan_8

- based on monitoring of bias value depending on observation time-delay
- one-month period data assimilated at 0,6,9,12,15,18 UTC (sample size)
- increasing bias due to time-delay detected for:
 - MHS affecting all humidity channels (3-5)
 - AMSU-A low, high-troposphere channels (5,8,9)
 - IASI low, middle, high-troposphere channels + bias reduction (CLD scheme)

- based on monitoring of bias value depending on observation time-delay
- one-month period data assimilated at 0,6,9,12,15,18 UTC (sample size)
- increasing bias due to time-delay detected for:
 - MHS affecting all humidity channels (3-5)
 - AMSU-A low, high-troposphere channels (5,8,9)
 - IASI low, middle, high-troposphere channels + bias reduction (CLD scheme)
- compromise between time-delay bias and observation sample size (AW=±90 min)

Forecast impact of 6h-AW to 3h (positive)

Forecast impact of 6h-AW to 3h (positive)

Patrik Benáček (CHMI)

Data coverage

observation sample size reduction for ±90 min AW

E

- a bias correction algorithm implemented in DA-Var system (3D-Var)
- continuous/automatic update of radiance bias correction in response to changes in DA
- minimization of cost function:

 $J(x,\beta) = (x_b - x)^T B^{-1} (x_b - x) + (\beta_b - \beta)^T B_{\beta}^{-1} (\beta_b - \beta) + [y - H(x) - C(\beta)]^T R^{-1} [y - H(x) - C(\beta)]$

where:

 β_b . . . bias parameter estimate (from previous analysis)

 B_{eta} . . . bias parameter background error covariance matrix

<ロ> <同> <同> < 回> < 回> < 回> = 三

- a bias correction algorithm implemented in DA-Var system (3D-Var)
- continuous/automatic update of radiance bias correction in response to changes in DA
- minimization of cost function:

 $J(x,\beta) = (x_b - x)^T B^{-1} (x_b - x) + (\beta_b - \beta)^T B_{\beta}^{-1} (\beta_b - \beta) + [y - H(x) - C(\beta)]^T R^{-1} [y - H(x) - C(\beta)]$

where:

 β_b ... bias parameter estimate (from previous analysis)

 B_{eta} . . . bias parameter background error covariance matrix

• bias correction $C(\beta)$:

$$C(\beta) = \sum_{i=0}^{N} \beta_i P_i$$

 $P_i \dots$ predictors representing main atmospheric/satellite characteristics

 $\beta_i \ldots$ bias parameters representing weight of predictors

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- a bias correction algorithm implemented in DA-Var system (3D-Var)
- continuous/automatic update of radiance bias correction in response to changes in DA
- minimization of cost function:

 $J(x,\beta) = (x_b - x)^T B^{-1} (x_b - x) + (\beta_b - \beta)^T B_{\beta}^{-1} (\beta_b - \beta) + [y - H(x) - C(\beta)]^T R^{-1} [y - H(x) - C(\beta)]$

where:

 β_b ... bias parameter estimate (from previous analysis)

 B_{eta} . . . bias parameter background error covariance matrix

• bias correction $C(\beta)$:

$$C(\beta) = \sum_{i=0}^{N} \beta_i P_i$$

 $P_i \dots$ predictors representing main atmospheric/satellite characteristics

 β_i . . . bias parameters representing weight of predictors

Bias parameter adaptation by B_β (variations on diagonal):

$$\sigma_{\beta}^2 = \sigma_o^2 / N$$

 $\sigma_o\ldots$ pre-defined observation error

 $N \ldots$ adaptivity parameter of β

Patrik Benáček (CHMI)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ク < ⊙

• Coldstart - initialization from zero bias parameters

< ∃→

E

- Coldstart initialization from zero bias parameters
- Warmstart (LAMBC) initialization from global model & cycling β in LAM

→ E → < E →</p>

Initialization methods

- Coldstart initialization from zero bias parameters
- Warmstart (LAMBC) initialization from global model & cycling β in LAM

• **Repetitive restart (GLMBC)** – repetitive initialization β from global model

→ E → < E →</p>

- default VarBC setting more appropriate for global model than LAM systems
- main difficulties of VarBC in LAM:

VarBC difficulties in LAM

- default VarBC setting more appropriate for global model than LAM systems
- main difficulties of VarBC in LAM:
 - observation sample size global/LAM

- default VarBC setting more appropriate for global model than LAM systems
- main difficulties of VarBC in LAM:
 - observation sample size global/LAM
 - statistics (OG) more affected by model/time-delay bias

- default VarBC setting more appropriate for global model than LAM systems
- main difficulties of VarBC in LAM:
 - observation sample size global/LAM
 - statistics (OG) more affected by model/time-delay bias
 - **(**) default β -parameters adaptivity \rightarrow problems:

- default VarBC setting more appropriate for global model than LAM systems
- main difficulties of VarBC in LAM:
 - observation sample size global/LAM
 - statistics (OG) more affected by model/time-delay bias
 - **(**) default β -parameters adaptivity \rightarrow problems:
 - model bias interpreted as satellite bias

- default VarBC setting more appropriate for global model than LAM systems
- main difficulties of VarBC in LAM:
 - observation sample size global/LAM
 - statistics (OG) more affected by model/time-delay bias
 - **(**) default β -parameters adaptivity \rightarrow problems:
 - model bias interpreted as satellite bias
 - $\bullet \ \ \text{initialization: passive} \rightarrow \text{active mode}$

VarBC difficulties in LAM

Problem description

- default VarBC setting more appropriate for global model than LAM systems
- main difficulties of VarBC in LAM:
 - observation sample size global/LAM
 - statistics (OG) more affected by model/time-delay bias
 - **(**) default β -parameters adaptivity \rightarrow problems:
 - model bias interpreted as satellite bias
 - initialization: passive \rightarrow active mode

VarBC tuning:

- detection/elimination of time-delay bias (penalization of GLMBC)
- In the second secon
- initialization for sensor IASI technical issues
- assessment of initialization methods (GLMBC vs. LAMBC)

• passive GLMBC/LAMBC experiment; assimilation MetOp-A,B at:

- 09 UTC, 3h-AW, $\delta t_1 \sim$ 0 1 h
- 12 UTC, 6h-AW, $\delta t_2 \sim$ 2 3 h

E ▶ < E ▶

Time-delay bias affecting

- passive GLMBC/LAMBC experiment; assimilation MetOp-A,B at:
 - 09 UTC, 3h-AW, $\delta t_1 \sim 0-1$ h
 - 12 UTC, 6h-AW, $\delta t_2 \sim$ 2 3 h

• detecting time-delay bias (comparing OG between GLMBC δt_1 and δt_2)

OG statistics for sensor IASI: GLMBC, $\delta t_1 \sim 0-1$ h

Time-delay bias affecting

- passive GLMBC/LAMBC experiment; assimilation MetOp-A,B at:
 - 09 UTC, 3h-AW, $\delta t_1 \sim 0-1$ h
 - 12 UTC, 6h-AW, $\delta t_2 \sim$ 2 3 h

• detecting time-delay bias (comparing OG between GLMBC δt_1 and δt_2)

OG statistics for sensor IASI: GLMBC, $\delta t_2 \sim 2-3$ h

Time-delay bias affecting

- passive GLMBC/LAMBC experiment; assimilation MetOp-A,B at:
 - 09 UTC, 3h-AW, $\delta t_1 \sim 0-1$ h
 - 12 UTC, 6h-AW, $\delta t_2 \sim$ 2 3 h
- detecting time-delay bias (comparing OG between GLMBC δt_1 and δt_2)
- reduction of time-delay bias using LAMBC

OG statistics for sensor IASI: LAMBC, $\delta t_2 \sim 2-3$ h

- passive assimilation of MetOp-B data with $\delta t \sim$ 0 1 h
- reference are bias parameters from global model (GLMBC)
- tuning adaptivity in LAMBC to reach similar adaptivity as in GLMBC
- tunable by parameter NBG_\$ { SENSOR } in namelist

Time-evolution of β for MHS/channel-4 for GLMBC.

- passive assimilation of MetOp-B data with $\delta t \sim$ 0 1 h
- reference are bias parameters from global model (GLMBC)
- tuning adaptivity in LAMBC to reach similar adaptivity as in GLMBC
- tunable by parameter NBG_\$ { SENSOR } in namelist

Time-evolution of β for MHS/channel-4 for LAMBC: NBG_MHS=5000 (default).

-∢ ≣ ≯

- passive assimilation of MetOp-B data with $\delta t \sim$ 0 1 h
- reference are bias parameters from global model (GLMBC)
- tuning adaptivity in LAMBC to reach similar adaptivity as in GLMBC
- tunable by parameter NBG_\$ { SENSOR } in namelist

Time-evolution of β for MHS/channel-4 for LAMBC: NBG_MHS=20000.

- passive assimilation of MetOp-B data with $\delta t \sim$ 0 1 h
- reference are bias parameters from global model (GLMBC)
- tuning adaptivity in LAMBC to reach similar adaptivity as in GLMBC
- tunable by parameter NBG_\$ { SENSOR } in namelist

Time-evolution of β for MHS/channel-4 for LAMBC: NBG_MHS=80000.

< ⊒ >

- passive assimilation of MetOp-B data with $\delta t \sim 0-1~{
 m h}$
- reference are bias parameters from global model (GLMBC)
- tuning adaptivity in LAMBC to reach similar adaptivity as in GLMBC
- tunable by parameter NBG_\$ { SENSOR } in namelist

Time-evolution of β for MHS/channel-4 for LAMBC: NBG_MHS=120000.

< ⊒ >

- passive assimilation of MetOp-B data with $\delta t \sim 0 1$ h
- reference are bias parameters from global model (GLMBC)
- tuning adaptivity in LAMBC to reach similar adaptivity as in GLMBC
- tunable by parameter NBG_\$ { SENSOR } in namelist

Adaptivity of β for warmstart initialization

Sensor	NBG parameter	NBG value
AMSU-A	NBG_AMSUA	10000
IASI	NBG_IASI	20000
MHS	NBG_MHS	120000
SEVIRI	NBG_MSG_HR	20000

VarBC initialization for sensor IASI

- current NWP restricted to assimilation only clear-sky IASI channels
- cloud detection schemes (DS) reject cloudy-channels using Watts&McNally (McNally, 2003):
 - cloud-effect is judged on the basis of FG departure check and window-gradient check
 - DS works correctly supposing unbiased satellite data

I ∃ ≥

Initialization methods

- Coldstart:
 - biased satellite data assessed as cloud-contaminated (in QC) and rejected

EXP_CY36_coldstart : Channel 269

Initialization methods

Coldstart:

- biased satellite data assessed as cloud-contaminated (in QC) and rejected
- Warmstart:
 - initialization from global VarBC parameters avoiding data rejection

EXP CY38 : Channel 269

Initialization methods

Coldstart:

biased satellite data assessed as cloud-contaminated (in QC) and rejected

• Warmstart:

- initialization from global VarBC parameters avoiding data rejection
- BE CAREFULL use global parameters produced in the same version as LAM model
- specific bias parameters for IASI between ARPG_CY38 and ARPG_CY37

Fast-adapting method

- developed during LACE stay in HMS/2013 (details in Report)
- VarBC initialization for IASI in case of coldstart option (any VarBC information)
- based on fast adaptation of global offset β_0 during first few clear-sky days to reduce satellite bias

Fast adaptation of Arpege_CY38 (warmstart) to LAM_CY36 for IASI/channel-269.

- 3h-forward intermittent cycle (3H-RUC):
 - time-delay error reduction (3h-AW)
 - increasing observation sample size

∢ 臣 ▶ ∢ 臣 ▶

- 3h-forward intermittent cycle (3H-RUC):
 - time-delay error reduction (3h-AW)
 - increasing observation sample size
- observation: SATS (all terms), CONV (main terms)

- 3h-forward intermittent cycle (3H-RUC):
 - time-delay error reduction (3h-AW)
 - increasing observation sample size
- observation: SATS (all terms), CONV (main terms)
- Arpege coupling (LBC 0,3,6 h)

글 > - - - - >

- 3h-forward intermittent cycle (3H-RUC):
 - time-delay error reduction (3h-AW)
 - increasing observation sample size
- observation: SATS (all terms), CONV (main terms)
- Arpege coupling (LBC 0,3,6 h)
- ens B-matrix (6h-forecast) σ_b diagnostics (Desroziers, 2005)

< E

- 3h-forward intermittent cycle (3H-RUC):
 - time-delay error reduction (3h-AW)
 - increasing observation sample size
- observation: SATS (all terms), CONV (main terms)
- Arpege coupling (LBC 0,3,6 h)
- ens B-matrix (6h-forecast) σ_b diagnostics (Desroziers, 2005)
- spin-up domain diagnostics RMSt of p_s (by echkevo)

Spin-up (RMSt) for F+3h (mean value for 5 days: sample N=20)

Initialization method - assessment

- 3h-forward intermittent cycle (3H-RUC):
 - time-delay error reduction (3h-AW)
 - increasing observation sample size
- observation: SATS (all terms), CONV (main terms)
- Arpege coupling (LBC 0,3,6 h)
- ens B-matrix (6h-forecast) σ_b diagnostics (Desroziers, 2005)
- spin-up domain diagnostics RMSt of p_s (by echkevo)

Spin-up (RMSt) for F+3h (mean value for 5 days: sample N=20)

Experiment setting:

- 20.3.-30.4.2014 (passive) using GLMBC/LAMBC
- tuned NBG parameters, 3h-AW
- 1.-20.5.2014 (active), production at 00, 12 UTC

Experiment setting:

- 20.3.-30.4.2014 (passive) using GLMBC/LAMBC
- tuned NBG parameters, 3h-AW
- 1.-20.5.2014 (active), production at 00, 12 UTC

Bias correction quality:

- based on OG monitoring
- LAMBC better correction than GLMBC:
 - [+] AMSU-A (7-11): T sensitive above 100 hPa
 - [+] IASI (173-109): T sensitive above 100 hPa
 - [+] IASI (226-207): T sensitive 200-300 hPa
 - [+] MHS (5): RH sensitive 500-700 hPa

Experiment setting:

- 20.3.-30.4.2014 (passive) using GLMBC/LAMBC
- tuned NBG parameters, 3h-AW
- 1.-20.5.2014 (active), production at 00, 12 UTC

Bias correction quality:

- based on OG monitoring
- LAMBC better correction than GLMBC:
 - [+] AMSU-A (7-11): T sensitive above 100 hPa
 - [+] IASI (173-109): T sensitive above 100 hPa
 - [+] IASI (226-207): T sensitive 200-300 hPa
 - [+] MHS (5): RH sensitive 500-700 hPa

Forecast impact:

- verification against radiosonde (VERAL)
- LAMBC better than GLMBC except of RH:400-700 hPa

Initialization method - assessment

Patrik Benáček (CHMI)

24/33

Initialization method - assessment

Patrik Benáček (CHMI)

24/33

Summary

• AW investigation:

- time-delay error affecting (RH-channels up to 10 K; T-channels up to 1 K)
- best compromise decreasing AW-lenght to \pm 90 min (all sensors)

• VarBC shortcomings in LAM:

- effect of time-delay
- tuning of β-parameters adaptivity
- initialization of VarBC for sensor IASI
- initialization methods (warmstart/repetitive restart) assessment

Summary

• AW investigation:

- time-delay error affecting (RH-channels up to 10 K; T-channels up to 1 K)
- best compromise decreasing AW-lenght to ±90 min (all sensors)

• VarBC shortcomings in LAM:

- effect of time-delay
- tuning of β-parameters adaptivity
- initialization of VarBC for sensor IASI
- initialization methods (warmstart/repetitive restart) assessment

Plans

- better assessment of MW sensors (AMSU-A, MHS) in DA (no clouds restrictions)
- 3D-FGAT, 3H-RUC: spin-up, DFI tuning
- finding new VarBC predictors for sensor MSG (Vienna 2013)
- optimal thinning of satellite data

Current thinning of satellite data

Smoothed OG departures for MHS/channel-4. Thinned data (black) and not-thinned data (grey) after QC.

-

- Berre, L., Stefănescu S., and Pereira B.P, 2006: The representation of analysis effect in three error simulation techniques. Tellus, Ser. A, 58, 196–209
- *Desroziers G., Berre L., Chapnik B., Poli P., 2005:* **Diagnosis of observation, background and analysis error statistics in observation space.** QJRM, 131, 3385-3396

Montmerle T., 2011: Data Assimilation Strategies for Operational NWP at Meso-scale and Implication for Nowcasting. WMO/WWRP Workshop on Use of NWP for Nowcasting UCAR, Boulder, CO, USA (presentation)

McNally AP., Watts PD., 2003: **A cloud detection algorithm for high-spectral-resolution infrared sounders.** Q.J.R. Meteorol. Soc. 129:3411-3423

Thank you for your time/attention.

æ

- in mf_blacklist.h permanently blacklisted channels
- in LISTE_LOC_\$ {NT} blacklist in bator (e.g. for specific analysis time)

글 🕨 🗶 글 🕨

- in mf_blacklist.h permanently blacklisted channels
- in LISTE_LOC_\$ {NT} blacklist in bator (e.g. for specific analysis time)

Permanent blacklisting

• FOV selection [default]

- in mf_blacklist.h permanently blacklisted channels
- in LISTE_LOC_\$ {NT} blacklist in bator (e.g. for specific analysis time)

Permanent blacklisting

- FOV selection [default]
- Specific selection:
 - atmospheric windows (surf_chan) influenced by model bias (T_{surf}, ε,...)
 - MW sensors: AMSU-A (1-4,14,15), MHS/AMSU-B (1,2) [default]
 - IASI sensor: LT (CH> 300), sufr_chan (over sea) [weighting functions]
 - stratospheric channels (sensitive above 100hPa) model bias not affect MT, LT through signal propagation
 - AMSU-A (CHAN \geq 10)
 - IASI (CHAN< 109)

- in mf_blacklist.h permanently blacklisted channels
- in LISTE_LOC_\$ {NT} blacklist in bator (e.g. for specific analysis time)

Permanent blacklisting

- FOV selection [default]
- Specific selection:
 - atmospheric windows (surf_chan) influenced by model bias (*T_{surf}*, ε,...)
 - MW sensors: AMSU-A (1-4,14,15), MHS/AMSU-B (1,2) [default]
 - IASI sensor: LT (CH> 300), sufr_chan (over sea) [weighting functions]
 - stratospheric channels (sensitive above 100hPa) model bias not affect MT, LT through signal propagation
 - AMSU-A (CHAN \geq 10)
 - IASI (CHAN< 109)
- Corrupted/affected channels [OG statistics]
 - corrupted channels comparing STD (OGdep) between different satellites (NOAA18/19, MetOp-A/B)
 - NOAA19/AMSU-A (7,8) [corrupted]
 - NOAA19/MHS (3) [corrupted]
 - MetOp-A(004)/AMSU-A (7) [corrupted]
 - affected channels [IASI channel selection]
 - sorting channels (from high to low) comparing STD (increasing due to HT sensitivity for broader peaks)
 - comparing OG statistics (STD, bias) MetOp-A/B
- specific blacklist for each analysis time??
- observation (satellite/sensor/channel) error should be similar at each analysis time
- satellite observation error = combination of model/RTTOV/cloud-processing/VarBC/time-delay/other errors

- specific blacklist for each analysis time??
- observation (satellite/sensor/channel) error should be similar at each analysis time
- satellite observation error = combination of model/RTTOV/cloud-processing/VarBC/time-delay/other errors
- specific analysis time blacklisting is appropriate:
 - data NOT assimilated at observation time (depending on time-delay observation/analysis)
 - model bias NOT the same at each analysis time (depending on weather conditions)
 - observation sample size is NOT the same at each analysis time (depending on satellite orbits – edge/full cover)
 - VarBC correction quality is NOT the same at each analysis time (depending on observation sample size/passive)

- specific blacklist for each analysis time??
- observation (satellite/sensor/channel) error should be similar at each analysis time
- satellite observation error = combination of model/RTTOV/cloud-processing/VarBC/time-delay/other errors
- specific analysis time blacklisting is appropriate:
 - data NOT assimilated at observation time (depending on time-delay observation/analysis)
 - model bias NOT the same at each analysis time (depending on weather conditions)
 - observation sample size is NOT the same at each analysis time (depending on satellite orbits – edge/full cover)
 - VarBC correction quality is NOT the same at each analysis time (depending on observation sample size/passive)

How to do local blacklisting?

- specific blacklist for each analysis time??
- observation (satellite/sensor/channel) error should be similar at each analysis time
- satellite observation error = combination of model/RTTOV/cloud-processing/VarBC/time-delay/other errors
- specific analysis time blacklisting is appropriate:
 - data NOT assimilated at observation time (depending on time-delay observation/analysis)
 - model bias NOT the same at each analysis time (depending on weather conditions)
 - observation sample size is NOT the same at each analysis time (depending on satellite orbits – edge/full cover)
 - VarBC correction quality is NOT the same at each analysis time (depending on observation sample size/passive)

• How to do local blacklisting?

- For long-time passive experiment check at each analysis time:
 - observation sample size full/edge cover (less sample size suspicious)
 - OG statistics (bias) VarBC correction quality (large bias suspicious)
 - time-delayed data + scan-edge suspicious
- recommendation: shorter AW (3h) NOT to combine model/observation/time-delay errors (MHS/AMSU-B)

Channel selection for data close to analysis time.

IASI channel selection/CZ

middle peaking channels for 12 UTC SAT: 4

Patrik Benáček (CHMI)

E

Satellite/Time	0	3	6	9	12	15	18	21
N16 [207]								
AMSU-A	-	-	-	-	-	-	-	-
N18 [209]								
AMSU-A	-	5-9	5-9	-	5-9	5-9	-	-
AMSU-B	-	3-5	3-5 : Td	-	3-5 : Td	3-5		
N19 [223]								
AMSU-A	5,6,9 (no 7,8)	5,6,9 (no 7,8)	-	-	5,6,9 (no 7,8)	-	-	-
MHS	4,5 (no 3)	4,5 (no 3) : <u>Td</u>	-	-	4,5 (no 3)	-	-	-
MetB [004]								
AMSU-A	-	-		-			-	-
MHS		-		-	-		-	
IASI	-	-		SELECTION	little		Bias – VarBC21	SELECTION
MetA [003]								
AMSU-A	-	-		5-9	little		5-9	5-9
MHS	-	-		3-5	little		3-5 : Td	3-5
IASI	-	-		SELECTION	little		Bias – VarBC21	SELECTION
MSG10 [073]								
SEVIRI	2,3.4,6,7	2,3.4,6,7	2,3,4,6,7	2,3,4,6,7	2,3,4,6,7	2,3,4,6,7	2,3,4,6,7	2,3,4,6,7
suspicious (tested)								
active								
varbe changes								

< ∃→

E